NAME \qquad

1. Write in the form $a+b i$:

$$
\frac{5}{(1-i)(2-i)(3-i)}
$$

2. Solve $z^{2}-2 z+2=0$.
3. Sketch the set of points in the complex plane \mathbb{C} satisfying

$$
|z-1|=|z+i|
$$

4. If $z \neq 1$ show that

$$
1+z+z^{2}+\cdots+z^{n}=\frac{1-z^{n+1}}{1-z}
$$

Then derive Lagrange's trigonometric identity

$$
1+\cos \theta+\cos 2 \theta+\cdots+\cos n \theta=\frac{1}{2}+\frac{\sin \left(n+\frac{1}{2}\right) \theta}{2 \sin \frac{\theta}{2}}
$$

5. Show that if $f(z)=\operatorname{Re}(z)$ then $f^{\prime}(z)$ does not exist anywhere.
6. Show that $f(z)=e^{-y} e^{i x}$ is an analytic function.
7. Find a function $v(x, y)$ so that if $u(x, y)=2 x(1-y), f(z)=u+i v$ is an analytic function. Such a v is called a harmonic conjugate of u.
8. Show that $\sin (i z)=i \sinh z$ and $\cos (i z)=\cosh z$.
9. Let C be the boundary of the square with vertices $0,1,1+i, i$ traversed counterclockwise. Compute the contour integral

$$
\int_{C} \pi e^{\pi \bar{z}} d z
$$

