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Chapter 1

Basic Complex Analysis

1.1 Complex numbers

Complex numbers are numbers of the form x + yi, where x and y are real numbers, and i is the
square root of minus one. For instance, 2 + 3i is a complex number, as is

√
2 + πi. We can add,

subtract, multiply, and divide complex numbers just like regular real numbers, with the usual laws
of algebra holding (commutative, associative, distributive laws, etc). We usually write z = x + yi
for a generic complex number, where x is the real part of the number, and y is the imaginary part
of the number. It is convenient to define the basic functions

<(z) = x the real part of z (1.1)
=(z) = y the imaginary part of z (1.2)

|z| =
√
x2 + y2 the absolute value (or modulus) of z (1.3)

z = x− yi the conjugate of z (1.4)

and observe some simple relations like zz = |z|2, |z| = |z|, and −|z| ≤ <(z) ≤ |z|.

1.1.1 Arithmetic

Addition and subtraction are done by adding the real and imaginary parts, while multiplication is
done by usual distribution and using the fact that i2 = −1. Thus we can compute

(2 + 3i) + (4 + 5i) = 5 + 8i (1.5)
(2 + 3i)− (4 + 5i) = (2− 4) + (3− 5)i = −2− 2i (1.6)
(2 + 3i) ∗ (4 + 5i) = 2 ∗ 4 + 2 ∗ 5i+ 3i ∗ 4 + 3i ∗ 5i (1.7)

= 8 + 10i+ 12i+ 15i2 = (8− 15) + (10 + 12)i = −7 + 22i (1.8)

Division of a complex number by a real number is easy, just do it by components,

(4 + 5i)/2 = 2 + 2.5i. (1.9)

Division by a complex number is only slightly more complicated, just use the formula

z1

z2
=
z1z2

|z2|2
(1.10)

1



2 CHAPTER 1. BASIC COMPLEX ANALYSIS

so, for instance
2 + 3i
4 + 5i

=
(2 + 3i)(4− 5i)
|4 + 5i|2

=
23 + 2i
16 + 25

=
23
41

+
2
41
i. (1.11)

If this seems weird to you, remember that the point of division is to be the reverse of multiplication.
So we can check the answer, by multiplying(

23
41

+
2
41
i

)
(4 + 5i) = (4∗23−5∗2)/41+((23∗5+2∗4)/41)i = (82/41)+(123/41)i = 2+3i (1.12)

which is the original numerator.
The point of all this is that with these definitions, the set of all complex numbers forms a field,

which means we can do all the usual arithmetic tricks with this set of numbers. The only thing we
don’t have is an order, so it doesn’t make sense to ask whether 2 + 3i < 4 + 5i.

You should also note how the arithmetic operations combine with conjugation. For instance, it
is easy to verify that

z1 + z2 = z1 + z2 (1.13)
z1 − z2 = z1 − z2 (1.14)
(z1z2) = z1 z2 (1.15)

(z1/z2) = z1/z2 (1.16)
z = z (1.17)
z = z if and only if z is real (1.18)

<(z) =
z + z

2
(1.19)

=(z) =
z − z

2i
(note the i on the bottom) (1.20)

1.1.2 Geometry

It is useful to draw complex numbers as points on a plane, with the x and y parts the usual
horizontal and vertical components. See Figure 1. Thus complex numbers “look” just like vectors
in the plane. Addition and subtraction behave just like vector addition and subtraction. The
absolute value of a complex number is just its usual length as a vector. We also see immediately
that the triangle rule for addition holds,

|z1 + z2| ≤ |z1|+ |z2|, (1.21)

since it is true for vectors.
From this graphical representation, it is clear that we write any complex number in polar form,

with
z = r(cos(θ) + i sin(θ)) (1.22)

where the radial distance r = |z| is just the absolute value of z, and φ = arg(z) is the angle
measured from the x axis to the radial vector pointing to z. The sum cos(θ) + i sin(θ) comes up so
often that we give is a special notation, using the exponential form

eiθ = cos(θ) + i sin(θ). (1.23)
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Figure 1.1: Two complex numbers on the complex plane.

Note that the usual property of exponentials (exp of a sum is the product of the exp’s) summarizes
the familiar trig formulas for the sum of angles. That is, we have three equivalent formulas:

ei(θ1+θ2) = eiθ1eiθ2 (1.24)
cos(θ1 + θ2) + i sin(θ1 + θ2) = [cos(θ1) + i sin(θ1)][cos(θ2) + i sin(θ2)] (1.25)
cos(θ1 + θ2) + i sin(θ1 + θ2) = [cos(θ1) cos(θ2)− sin(θ1) sin(θ2)] + (1.26)

i[sin(θ1) cos(θ2) + cos(θ1) sin(θ2)] (1.27)

What is amazing is now you don’t have to remember those complicated sine, cosine laws that you
learned in trig: they can all be derived from these simple exponential rules.

The form z = reiθ is called the polar representation of the complex number. Notice we can do
multiplication in this form, so

z1z2 = (r1e
iθ1)(r2e

iθ2) = (r1r2)(eiθ1eiθ2) = (r1r2)ei(θ1+θ2). (1.28)

Thus we see that when two complex numbers are multiplied, their lengths (abs. value) multiply,
and their angles (arg) just add. We can sum up several related properties as follows:

|z1 ∗ z2| = |z1| ∗ |z2| (1.29)
|z1/z2| = |z1|/|z2| (1.30)

arg(z1 ∗ z2) = arg(z1) + arg(z2) mod 2π (1.31)
arg(z1/z2) = arg(z1)− arg(z2) mod 2π (1.32)

arg(z) = −arg(z) mod 2π (1.33)

These comments “mod 2π” point out one difficulty that the angle from the x axis is not uniquely
defined, since we can wrap around the origin many times as we work out the angle. There are
several conventions used when defining the argument function. One standard convention is to
choose the angle measurement so that we always have

0 ≤ arg(z) < 2π; (1.34)
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another convention is to choose
−π < arg(z) ≤ π. (1.35)

Mathematicians usually use the first convention. Computer scientists, physical scientists, and
others, often use the second convention. MATLAB uses the second convention. The problems with
calculating modulo 2π remains in any convention you choose.

From the geometric picture, it is tempting to define the arg function as

arg(z) = arctan(y/x), (1.36)

however, this is only valid on the right half of the complex plane, where x > 0. So be careful.
To summarize, the graphical representation of complex numbers on the two dimensional plane

tells us a lot about how complex numbers behave under calculations. Addition and subtraction is
just like with vectors. Multiplication of two complex numbers just multiplies their vector lengths,
and adds the polar angles. You can think about arithmetic operations on complex numbers as
simple geometric movements.

1.1.3 Algebraic results

Since we know how multiplication works, we have a simple formula for computing powers of a
complex number. This is called de Moivre’s formula. With z = reiθ, then

zn = rneinθ for any integer n. (1.37)

From this, we can also compute the n-th roots of any complex number. Again, with z = reiθ, the
n-th roots of z are given as

zk = n
√
rei(θ/n+2πk/n), k = 0, 1, 2, . . . , n− 1. (1.38)

The reason this works of course follows from de Moivre’s formula, since we see that

znk = ( n
√
r)nein(θ/n+2πk/n) = reiθ+2πk = reiθ = z. (1.39)

Figure 2 gives a nice geometric interpretation of this root formula, for the case of finding fourth
roots. Notice the four roots are uniformly spread around a circle of fixed radius. This happens in
general case of finding n-th roots of a complex number.

The numbers zk = ei2πk/n, k = 0, 1, 2, . . . , n − 1 are called the n-th roots of unity, and are the
n distinct solutions to the equation

zn = 1. (1.40)

As in the previous example, these n complex roots of unity are uniformly spread around the circle
of radius one in the complex plane, and include the trivial real root z0 = 1. We will see these roots
of unity many times in the course, in particular with the discrete Fourier transform.

A deep result in algebra, which we can prove using complex analysis, is that EVERY polynomial
equation of the form

zn + a1z
n−1 + a2z

n−2 + · · ·+ an−1z + an = 0 (1.41)

can be solved, finding roots z1, Z2, . . . , zn to the equation. Thus the polynomial can always be
factored in the form

zn + a1z
n−1 + a2z

n−2 + · · ·+ an−1z + an = (z − z1)(z − z2)(z − z2) · · · (z − zn). (1.42)

This result is called the Fundamental Theorem of Algebra and holds whether the coefficients
a1 . . . an are real or complex. The quadratic formula we learned in high school shows how to solve
this in the simple case of n = 2. There are also formulas for n = 3, 4, but for higher degree
polynomial, the roots may be found using numerical methods.
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Figure 1.2: The complex number z = 4 + 7i and its 4-th roots z0, z1, z2, z3. Note the four roots are
uniformly spread around a circle of radius r = 4

√
|z|. The polar angle of z0 is one-quarter the polar

angle of z.

1.2 Elementary functions

We are interested in defining functions that take any complex number z and compute a new complex
function. For instance,

f(z) = z3 + 23z2 + (2 + 3i)z + (4 + 5i) (1.43)

is a simple example of a polynomial function that maps complex numbers to complex numbers. A
rational function is the quotient of two polynomials, such as the function

f(z) =
z3 + 23z2 + (2 + 3i)z + (4 + 5i)

z2 + 1
. (1.44)

This last function is undefined at the points z = ±i, since we can’t divide by zero. But we still
consider it a perfectly useful complex valued function, with a domain that include all but two
complex numbers.

The complex exponential function is defined on complex number z = x+ iy as

ez = exeiy = ex(cos(y) + i sin(y). (1.45)

From this, we may define the usual trig functions as

cos(z) =
eiz + e−iz

2
(1.46)

sin(z) =
eiz − e−iz

2i
(1.47)

tan(z) =
sin(z)
cos(z)

=
1
i

eiz − e−iz

eiz + e−iz
(1.48)
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sec(z) =
1

cos(z)
=

2
eiz + e−iz

(1.49)

csc(z) =
1

sin(z)
=

2i
eiz − e−iz

(1.50)

cot(z) =
cos(z)
sin(z)

=
i

1
eiz + e−iz

eiz − e−iz
. (1.51)

The hyperbolic trig function are defined similarly, with

cosh(z) =
ez + e−z

2
(1.52)

sinh(z) =
ez − e−z

2
(1.53)

tanh(z) =
sinh(z)
cosh(z)

=
ez − e−z

ez + e−z
(1.54)

sech(z) =
1

cosh(z)
=

2
ez + e−z

(1.55)

csch(z) =
1

sinh(z)
=

2
ez − e−z

(1.56)

coth(z) =
cosh(z)
sinh(z)

=
ez + e−z

ez − e−z
. (1.57)

What we see is that all the trig and hyperbolic function are defined in terms of the exponential
function. So a careful examination of this one function is in order. We will do that in the next
section.

It is worth checking that the trig identities still hold. For instance, we can check that

sin(z1 + z2) = sin(z1) cos(z2) + cos(z1) sin(z2). (1.58)

Do this as an exercise, using the definition of sine and cosine above, and the exponential laws.
It is also interesting to note that the trig functions are defined almost exactly the same as the

hyperbolic functions, except for the careful placement of a factor of i. Thus, we see that on pure
imaginary numbers of the form iy, we have the interesting identities

sin(iy) = i ∗ sinh(y) (1.59)
cos(iy) = cosh(y) (1.60)
tan(iy) = i ∗ tanh(y) (1.61)
sec(iy) = sech(y) (1.62)
csc(iy) = −i ∗ csch(y) (1.63)
cot(iy) = −i ∗ coth(y) (1.64)

(1.65)

Thus, the trig functions, applied to pure imaginary numbers, evaluate to the usual (real) hyperbolic
functions, with the possible inclusion of an imaginary factor. (You may have noticed the even
functions like cos, sec don’t pick up any imaginary factor, while the odd functions do.)

It turns out we can use trig identities to compute our complex functions in terms of the more
familiar real functions. For instance, to compute sin(z) for complex z = x+ iy, we write

sin(z) = sin(x+ iy) = sin(x) cos(iy) + cos(x) sin(iy) = sin(x) cosh(y) + i cos(x) sinh(y). (1.66)
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That is, sin(z) is simply defined in terms of products of real sine and cosine functions with real
hyperbolic sine and cosine functions.

This sounds confusing. It’s not. The two key facts are 1) everything is defined by the exponen-
tial, and 2) all the trig identities you used to know still apply to the complex valued functions. So
for instance, it is true that

tan2(z) + 1 = sec2(z) (1.67)

holds for all complex numbers z.

1.2.1 The exponential function

The exponential of a complex number z = x+ iy is simply defined as

ez = ex(cos(y) + i sin(y). (1.68)

The motivation for this comes from the Taylor series expansion for ex, which we remember from
first year calculus to be

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ · · · . (1.69)

Replacing x with the pure imaginary number iy, we see that by multiplying out the terms in the
power series, and collecting the real and imaginary parts, we have

eiy = 1 +
iy

1!
+

(iy)2

2!
+

(iy)3

3!
+

(iy)4

4!
+

(iy)5

5!
+ · · · (1.70)

= 1 + i
y

1!
− y2

2!
− iy

3

3!
+
y4

4!
+ · · · (1.71)

=
(

1− y2

2!
+
y4

4!
−+ · · ·

)
+ i

(
y

1!
− y3

3!
+
y5

5!
+ · · ·

)
(1.72)

= cos(y) + i sin(y) (1.73)

where the last equality comes from recognizing the power series expansion for sine and cosine. The
definition for general complex numbers z = x + iy follows by forcing the exponential of a sum to
be the product of two exponentials.

Some basic properties of the exponential function include:

• ez is never equal to zero; however, it can reach every other complex number;

• eπi/2 = i, eπi = −1, e3πi/2 = −i, e2πi = 1;

• ez1+z2 = ez1ez2 ;

• ez+2πi = ez. That is, the function is periodic with period 2πi;

• |ex+iy| = ex;

• ex+iy is inside the unit circle if x < 0, on the unit circle if x = 0, outside the unit circle if
x > 0;

• ez = 1 if and only if z = 2nπi for some integer n.
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Each of these properties is easily checked, using a simple real-valued trig calculation. For instance,
in the second item, we have eπi/2 = cos(π/2) + i sin(π/2) = 0 + i ∗ 1 = i, as required.

It is useful to see how the exponential function maps regions the complex plane; the real part
x determines a stretching factor ex while the imaginary part iy determines a rotation by angle y
around the origin. Figure 3 shows some simple regions in C and the images under the complex
plane. The basic idea is that a vertical box shape gets stretched out in the horizontal direction,
while the vertical part gets wrapped around the origin.

Figure 1.3: Two strips in complex plane, mapped under the exponential, to curving strips.

The trig and hyperbolic functions are defined in terms of this complex exponential function, as
described in the last section. It is easy to verify that the usual trip identities hold for all complex
numbers, such as

• sin2(z) + cos2(z) = 1;

• sin(z1 + z2) = sin(z1) cos(z2) + cos(z1) sin(z2);

• cos(z1 + z2) = cos(z1) cos(z2)− sin(z1) sin(z2);

• tan2(z) + 1 = sec2(z);

for all complex numbers z. For instance, to verify the first identity, we note:

sin2(z) + cos2(z) =
(
eiz − e−iz

2i

)2

+
(
eiz + e−iz

2

)2

(1.74)

=
(
e2iz − 2 + e−2iz

−4

)
+
(
e2iz + 2 + e−2iz

4

)
(1.75)

=
2 + 2

4
= 1, (1.76)

as desired.
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There are analogous identities for the hyperbolic functions. Rather than memorizing the iden-
tities, it is easiest just to notice the close connection between the hyperbolic and trig functions,
namely that you go from trip to hyperbolic by introducing a factor of i. Thus,

• cosh(z) = cos(iz);

• sinh(z) = 1
i sin(iz);

• tanh(z) = 1
i tan(iz);

• sech(z) = cos(iz);

• csch(z) = i csc(iz);

• coth(z) = i cot(iz).

Again, these are easily verified by following the definitions given in terms of the exponential func-
tion. Thus, it is useful to remember that the exponential function is fundamental, and all the
other elementary functions are defined in terms of it, and their properties follow from exponential
properties.

1.2.2 The logarithm and complex powers

The logarithm function is defined as the inverse of the exponential function. More precisely, we
write

log(z) ≡ ln |z|+ i ∗ arg(z), (1.77)

where ln |z| is the natural logarithm of the absolute value of z, and arg(z) is the argument of z, also
known as the phase angle. Remember that the argument is not uniquely defined, so we have to pick
a branch cut for arg, and hence a choice of branch cut for log. Usually, we assume a convention
like

0 ≤ arg(z) < 2π (1.78)

or
−π < arg(z) ≤ pi. (1.79)

To see that this is an inverse, note that if we write z in polar form, z = |z|eiθ, then we see θ is
the arg of z and the real valued ln |z| will exponentiate to |z|, so

elog z = eln |z|+i∗arg(z) = eln |z|ei∗arg(z) = |z|eiθ = z, (1.80)

as desired. Note of course that the log of zero is undefined.
The usual log identities follow, except of course we have the problem of the 2π ambiguity in the

argument. Thus we have

• log(1) = 0;

• log(z1z2) = log(z1) + log(z2) mod 2πi;

• log(z−1) = − log(z) mod 2πi;

• log(zn) = n log(z) mod 2πi, for any integer n.
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This last identity log(zn) = n log(z) we would like to hold with n replaced by any complex number.
To do so, we have to first define the complex power of a complex number, which we do as

za ≡ ea∗log(z). (1.81)

Note that implicit in this definition is the choice of branch cut for the log function. Be very careful
about this, it means something apparently simple like (−i)i is not uniquely defined. For instance,
in our first convention for angles, we have arg(−i) = 3π/2 and so

(−i)i = ei∗log(−i) = ei(ln 1+3πi/2) = e−3π2/ = 0.0090..., (1.82)

while in our second convention, arg(−i) = −π/2 and so

(−i)i = ei∗log(−i) = ei(ln 1−πi/2) = eπ/2 = 4.8105.... (1.83)

Freaky.

1.3 Analytic functions: doing calculus with complex numbers

Definition 1 A function f(z) is differentiable at z0 if the limit

lim
z→z0

f(z)− f(z0)
z − z0

exists. (1.84)

When this limit exists, we denote it by f ′(z0), which is called derivative of f at z0.

For this definition to work precisely, we require that the function f(z) be defined at least in some
small disk around the point z0. This way, the limit allows z to approach z0 from any direction.1

As an example, consider the simple function f(z) = z2. Then we see

lim
z→z0

z2 − z2
0

z − z0
= lim

z→z0

(z − z0)(z + z0)
z − z0

= lim
z→z0

(z + z0) = 2z0. (1.85)

Thus we have that the derivative of z2 at z0 is just 2z0. Since this works at any point z0 in the
complex plane, we see that f(z) = z2 is differentiable everywhere, with derivative f ′(z) = 2z. In
other words,

d

dz
z2 = 2z. (1.86)

Similarly, we can find the derivative of f(z) = zn by computing

lim
z→z0

zn − zn0
z − z0

= lim
z→z0

(z − z0)(zn−1 + zn−2z0 + · · ·+ zzn−2
0 + zn−1

0 )
z − z0

(1.87)

= lim
z→z0

(zn−1 + zn−2z0 + · · ·+ zzn−2
0 + zn−1

0 ) (1.88)

= nzn−1
0 , (1.89)

which is what we expected. That is, the derivative of zn is the function nzn−1.
From this definition of derivative, it is easy to check that the usual sum, difference, product,

and quotient rules for derivatives hold. That is
1The limit is defined the same way as with real numbers: as z gets close to z0, the ratio inside the limit gets close

to some fixed number L, which will be called f ′(z0).
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Theorem 1 Suppose f, g are complex, differentiable functions at point z0. Then so are the sum,
difference, product, and quotient of f and g, with

(f + g)′(z0) = f ′(z0) + g′(z0) (1.90)
(f − g)′(z0) = f ′(z0)− g′(z0) (1.91)
(f ∗ g)′(z0) = f ′(z0) ∗ g(z0) + f(z0) ∗ g′(z0) (1.92)(
f

g

)′
(z0) =

f ′(z0)g(z0)− f(z0)g′(z0)
g(z0)2

(1.93)

We also have the chain rule,

f(g(z))′|z=z0 = f ′(g(z0))g′(z0). (1.94)

The proofs for this are exactly as in real calculus. Thus, we can now differentiate simple rational
functions, so for example:

d

dz

(
z

1 + z2

)
=

1(1 + z2))− z(2z)
(1 + z2)2

=
1− z2

(1 + z2)2
. (1.95)

To compute the derivative of the exponential is a bit tricky. We start by computing the derivative
at z0 = 0, which involves computing the limit

lim
z→0

ez − e0

z − 0
. (1.96)

This is tricky. We try to simplify by taking the limit over restricted set of directions, say z = x
with x real. Then

lim
z→0

ez − e0

z − 0
= lim

z→0

ex − e0

x− 0
=

d

dx
ex|x=0 = 1, (1.97)

which we know is 1 from our usual real calculus derivatives. Similarly, if we restrict to the imaginary
axis, and take the limit with z = iy a pure imaginary, then

lim
z→0

ez − e0

z − 0
= lim

y→0

eiy − e0

iy
= lim

y→0

cos(y) + i sin(y)− 1
iy

= lim
y→0

sin(y)
y
− icos(y)− 1

y
= 1 + i0, (1.98)

where again the last two limits come from real calculus.
Since we checked the limits in two directions, we can hope this limit holds:

lim
z→0

ez − e0

z − 0
= 1. (1.99)

Then, we can compute the derivative at any point z0 as

lim
z→z0

ez − ez0
z − z0

= lim
z→z0

ez0(ez−z0 − e0)
z − z0

= ez0 lim
z→z0

ez−z0 − e0

z − z0
= ez0 · 1 = ez0 . (1.100)

That is, the derivative of the exponential is again the exponential.
Since the trig, hyperbolic, and log functions are all defined in terms of the exponential, we can

find the derivatives knowing what we have already. Thus, for instance, we get derivatives just as
with real functions, so

• d
dz e

z = ez;



12 CHAPTER 1. BASIC COMPLEX ANALYSIS

• d
dz sin(z) = cos(z), since d

dz
eiz−e−iz

2i = ieiz+ie−iz

2i = eiz+e−iz

2 ;

• d
dz cos(z) = − sin(z), since d

dz
eiz+e−iz

2 = ieiz−ie−iz

2 = − eiz−e−iz

2i ;

• d
dz tan(z) = sec2(z);

• d
dz log(z) = 1

z but look out for the branch cut;

• d
dz z

n = nzn−1 for any integer n;

• d
dz z

a = aza−1 for any complex number a, but watch the branch cut;

etc.
Similarly, we can define antiderivatives in the obvious manner, so − cos(z) + C is the general

antiderivative of the sine function, since the derivative of − cos(z) + C is sin(z).
A function is said to be analytic on an open set2 in the complex plane if it is differentiable

at every point in that set. All the examples above are analytic on the whole set where they are
defined. Except for the case of log and complex powers, where they are analytic everywhere except
the branch cut. A function is entire if it is analytic on the whole complex plane.

However, we are cheating. We are looking at a lot of nice functions that are nicely differentiable.
But you should be warned: there are lots of smooth, complex valued functions on the complex plane
that are not analytic. We look at this in the next section.

1.4 The Cauchy-Riemann equations

Any complex valued function can be split into its real and imaginary parts, with

f(z) = u(x, y) + iv(x, y), where x+ iy = z. (1.101)

There is a close connection between the partial derivatives of u and v and the complex derivative
of f . In fact, we have the following:

Theorem 2 A function f(z) = u(x, y) + iv(x, y) is (complex) differentiable at z0 = x0 + iy0 if and
only if u and v satisfy the Cauchy-Riemann equations at z0; that is,

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0),

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0). (1.102)

In this case, the derivative of f at z0 is

f ′(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0). (1.103)

Let’s see an example first. The function f(z) = z2 is differentiable everywhere. Writing it as
real plus imaginary, we see

f(z) = z2 = (x2 − y2) + i(2xy) (1.104)

so we have u(x, y) = x2 − y2 and v(x, y) = 2xy. Taking partial derivatives, we see

∂u

∂x
= 2x =

∂v

∂y
and

∂u

∂y
= −2y = −∂v

∂x
. (1.105)

2An open set is one that does not contain any boundary points. Each point in the set is surrounded by a small
disk inside the same set.
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Thus u, v satisfy the Cauchy-Riemann equations, and we can verify that

f ′(z) = 2z = 2x+ i(2y) =
∂u

∂x
+ i

∂v

∂x
, (1.106)

as required.
So, how do we prove this theorem. Well, frankly I’m not too concerned with proofs here.

However, one direction of the “if and only if” is easy. If f is differentiable, you can look at the
definition of derivative as a limit, and restrict to the direction z = z0 + x, where x is a small real
parameter. Taking the limit as x→ 0 will give the equation

f ′(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0). (1.107)

On the other hand, restricting to the direction z = z0 + iy, where y is a small real parameter, and
taking the limit as y → 0 will give

f ′(z0) =
1
i

(
∂u

∂y
(x0, y0) + i

∂v

∂y
(x0, y0)

)
. (1.108)

Equating these last two equations yields the Cauchy-Riemann equations.
Proving the result in the reverse direction is quite a bit harder.
The C-R equations puts a very strong restriction on our choice of functions u and v. So for

instance, the functions u(x, y) = x2 + y2, v(x, y) = 2xy does not give a complex differentiable
function, since

∂u

∂y
= 2y 6= −∂v

∂x
. (1.109)

That is, the pair fails the second C-R equation, and thus the complex function

f(z) = (x2 + y2) + i(2xy) (1.110)

is not differentiable in the complex sense. (Even though u and v are very nice, differentiable real
functions on the plane.)

This points out that complex analytic functions are very special. In fact, they have some really
remarkable properties, which we list in the next section.

1.5 Analytic functions

Suppose f : D → C is an analytic function on an open set D inside the complex plane. That is,
it is a complex valued function whose derivative is defined (by the limit) everywhere inside of D.
Here are some of the properties of f .

• f is infinitely differentiable. That is, once the first derivative exists, f ′(z), then so does the
second derivative f ′′(z), the third derivative f ′′′(z), and so on, to any order of derivative.

• The real and imaginary parts of f(z) = u(x, y) + iv(x, y) are also infinitely differentiable. We
usually say they are smooth function.

• The real and imaginary parts u, v are harmonic functions, that is

∂2u

∂x2
+
∂2u

∂y2
= 0

∂2v

∂x2
+
∂2v

∂y2
= 0 (1.111)

everywhere on D.

• f has a uniquely defined antiderivative on any simply connected3 subset of D, up to an
3A region is simply connected if it is in one piece, but has no holes in it.
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additive constant.

• At any point z0, the function f can be expanded in a power series of the form

f(z) =
∞∑
n=0

an(z − z0)n, (1.112)

which coverges in a disk of some radius R centered at z0. The radius R is at least as big as
the radius of the biggest disk that fits in the region D, with center at z0.

• The coefficients in the power series expansion are given by the derivative of f , with

an =
f (n)(z0)
n!

. (1.113)

We will come back to these properties later. I want to point out how special complex analytic
function are. Contrast them to real-valued differentiable functions, which may be once differentiable
but not twice, and may not have convergent power series anywhere.

1.6 Power series

In high school we learn the geometric series:

1
1− x

= 1 + x+ x2 + x3 + · · · . (1.114)

What this means is we can compute the fraction on the left by adding up the numbers in the infinite
series on the right. So, for instance, when x = 1/2, we get

1
1− 1/2

=
1

1/2
= 2 = 1 +

1
2

+
1
4

+
1
8

+
1
16

+ · · · . (1.115)

If that doesn’t make sense to you, it is because you are not used to thinking in binary. A similar
result happens in decimal, by taking x = .1, so

1
1− 0.1

= 1 + 0.1 + (0.1)2 + (0.1)3 + (0.1)4 + · · · . (1.116)

That is,
1/0.9 = 1.11111... = 1 + .1 + .01 + .001+, 0001 + · · · . (1.117)

To be precise, we really should write the geometric series as a limit of partial sums, so we write

1
1− x

= lim
N→∞

(
1 + x+ x2 + x3 + · · ·+ xN

)
. (1.118)

There is nothing special about x being real; we get a similar series with complex number z, so

1
1− z

= lim
N→∞

(
1 + z + z2 + z3 + · · ·+ zN

)
. (1.119)

However, this limit only converges for complex numbers z with |z| < 1.
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Why? Well, using a little algebra, we can find

SN = 1 + z + z2 + z3 + · · ·+ zN (1.120)
zSN = z + z2 + z3 + · · ·+ zN+1 (1.121)

SN − zSN = 1− zN+1 (1.122)
so (1− z)SN = 1− zN+1. (1.123)

Thus we get

SN =
1− zN+1

1− z
, (1.124)

and if we try to take the limit as N →∞, the fraction on the right will converge only if |z| < 1, in
which case zN+1 → 0, so

limSN =
1− 0
1− z

. (1.125)

This is typical behaviour for a power series. Given a sequence of complex numbers a0, a1, a2, . . .,
we can try to define an analytic function in the form

f(z) = a0 + a1z + a2z
2 + a3z

3 + a4z
4 + · · · . (1.126)

There will be a disk in the complex plane, of the form {z ∈ C : |z| < R} where the series converges
for all z inside the disk, and diverge for all z outside the disk. It is possible that R = 0, or R =∞,
but you get the idea. How you compute R is a bit involved, so we skip that.

Inside this disk, the function is analytic, so we can its derivative by differentiating term by
term,

f ′(z) = a1 + 2a2z + 3a3z
2 + 4a4z

3 + · · · , (1.127)

and also compute an antiderivative,

F (z) =
a0

1
z +

a1

2
z2 +

a2

3
z3 +

a3

4
z4 +

a4

5
z5 + · · · . (1.128)

The derivative series, and antiderivative series, will have the same radius of convergence as the
original series.

1.6.1 Standard series

Geometric series:
1

1− z
= 1 + z + z2 + z3 + z4 + · · · , for |z| < 1 . (1.129)

Integrate the above, to get the log series

− log(1− z) =
z

1
+
z2

2
+
z3

3
+
z4

4
+
z5

5
+ · · · , for |z| < 1. (1.130)

Replace the z with −z2 in the geometric series to get

1
1 + z2

= 1− z2 + z4 − z6 + z8 + · · · , for |z| < 1 . (1.131)

Integrate this series in z2 to obtain the series for arctan,

arctan(z) =
z

1
− z3

3
+
z5

5
− z7

7
+
z9

9
+ · · · , for |z| < 1. (1.132)
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The exponential series is given by

exp(z) = 1 +
z

1!
+
z2

2!
+
z3

3!
+
z4

4!
+ · · · , for all z. (1.133)

As an exercise, check that the derivative of this series gives back the same series. (HINT: just
differentiate the series term-by-term.)

The cosine series is found by expressing the function as a sum of two exponentials:

cos(z) =
1
2

(eiz + e−iz)

=
1
2

(1 +
iz

1!
+

(iz)2

2!
+

(iz)3

3!
+

(iz)4

4!
+ · · ·

+1 +
−iz
1!

+
(−iz)2

2!
+

(−iz)3

3!
+
−iz)4

4!
+ · · ·)

= 1− z2

2!
+
z4

4!
− z6

6!
+ · · · for all z.

Similarly, the sine series can be found using exponentials, or by integrating the cosine series, so

sin(z) =
z

1!
− z3

3!
+
z5

5!
− z7

7!
+ · · · for all z. (1.134)

As an exercise, find the series expansion for hyperbolic cosine, and hyperbolic sine. (ANSWER:
you get the same as the sine and cosine expansions, except all the negative terms become positive.)

1.7 Complex integrals

Just as we learned to do derivatives for complex functions, we can also do integrals. However,
because we have a whole plane of complex numbers to work in, the integral of a function f(z) from
endpoints A to B must also specify a specific path γ connecting A and B. Thus the integral∫

γ
f(z) dz (1.135)

include three pieces of information:
- the integrand f(z), which is a function of a complex variable;
- the path γ, which is a continuous, piecewise differentiable curve in the plane; and
- the endpoint A, B, which are taken as specified by the path γ.

To compute the integral, we chop up the curve γ into N pieces, each piece with endpoints
zk−1, zk (k = 1, 2, . . . , N , and do a Riemann sum, and finally taking the limit as N goes to infinity.
So we define the integral as a limit∫

γ
f(z) dz = lim

N→∞

N∑
k=1

f(zk)(zk − zk−1). (1.136)

Figure 4 shows an example of this, with the curve γ a semicircular arc connecting the point A = 1
to the point B = i. If we integrate the function f(z) = 1 along this curve, we see the Riemann sum
just adds a bunch of short vectors spanning the curve, giving as the sum the vector that goes from
1 to i. Thus the integral will be ∫

γ
1 dz = i− 1. (1.137)



1.7. COMPLEX INTEGRALS 17

Figure 1.4: A curve in the complex plane, connecting A to B. Integrating by breaking the curve
up into short segments, and summing the segments.

In practice, we evaluate an integral by parametrizing the curve as a function γ(t) from the real
line to the complex plane, and using the formula∫

γ
f(z) dz =

∫ b

a
f(γ(t))γ′(t) dt. (1.138)

So, for instance, with the previous example, we can parametrize the semicircle as

γ(t) = cos(t) + i sin(t), 0 ≤ t ≤ π/2, (1.139)
γ′(t) = − sin(t) + i cos(t), (1.140)

and get∫
γ

1 dz =
∫ π/2

0
1(− sin(t) + i cos(t)) dt =

∫ π/2

0
− sin(t) dt+ i

∫ π/2

0
cos(t) dt = −1 + i, (1.141)

which is the same result we saw as before using Riemann sums.
The third way to compute an integral is to use the Fundamental Theorem of Calculus. If we

have an analytic function F (z) with derivative F ′(z) = f(z), then∫
γ
f(z) dz = F (B)− F (A), (1.142)

PROVIDED that the curve γ lies in a region on which F (z) is analytic.4 In the previous example,
the integrand f(z) ≡ 1 has antiderivative F (z) ≡ z, which is analytic everywhere, so we can
compute ∫

γ
1 dz = F (i)− F (1) = i− 1, (1.143)

4This analytic condition is very important, which we will see later.
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which again agrees with our previous calculation.
Let’s do a slightly harder integral, just to see again how the parameterization and antiderivative

ideas work. We let γ be the same semicircle connecting 1 to i, take f(z) = z, and note its
antiderivative is F (z) = z2/2. Thus we have∫

γ
z dz = F (i)− F (1) =

i2

2
− 12

2
= −1. (1.144)

We should get the same answer by parameterizing the curve and solving two real integrals. So let’s
use the same sin,cos parameterization for γ, and compute∫

γ
z dz =

∫ π/2

0
γ(t)γ′(t) dt (1.145)

=
∫ π/2

0
(cos(t) + i sin(t)) ∗ (− sin(t) + i cos(t)) dt (1.146)

=
∫ π/2

0
−2 cos(t) sin(t) dt+ i

∫ π/2

0
cos2(t)− sin2(t) dt = −1, (1.147)

as expected.

1.8 Some easy integrals

We take the function f(z) = zn and integrate it around the circle of radius R centered at the origin.
That is, the curve γ starts at the point z = R, loops around the circle to travel a distance of 2πR,
and returns to z = R. Figure 5 shows such a circle (ignore the branch cut for now.)

Figure 1.5: A circle of radius R, which we will integrate around. The branch cut indicates where
the log function fails to be analytic.

The parameterization for γ is given by

γ(t) = R cos(t) + iR sin(t) = Reit 0 ≤ t ≤ 2π (1.148)
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γ′(t) = −R sin(t) + iR cos(t) = iReit (1.149)

and so the integral is∫
γ
zn dz =

∫ 2π

0
(Reit)niReit dt = i

∫ 2π

0
(Reit)n+1 dt (1.150)

= iRn+1

∫ 2π

0
e(n+1)it dt = 0 (1.151)

= iRn+1

∫ 2π

0
[cos((n+ 1)t) + i sin((n+ 1)t)] dt = 0, when n 6= −1 (1.152)

which is zero since the cos, sin functions are periodic, and their negative and positive parts cancel
out in the integral. Now this is not surprising from the Fundamental Theorem of Calculus, since
the function f(z) = zn has antiderivative F (z) = 1

n+1z
n+1 and so we expect that by evaluating at

the endpoints, we have ∫
γ
zn dz = F (R)− F (R) = 0. (1.153)

So why is the case n = −1 any different? We note first that using the parameterization as
above, we obtain ∫

γ
z−1 dz = iR0

∫ 2π

0
[cos(0t) + i sin(0t)] dt = i

∫ 2π

0
1 dt = 2πi, (1.154)

which is certainly a non-zero answer. If we try to use the fundamental theorem of calculus, we note
that the antiderivative of f(z) = z−1 is log(z), so why don’t we get∫

γ
z−1 dz = log(r)− log(R) = 0? (1.155)

Well, the problem is that the function log(z) has to have a branch cut somewhere, and this branch
cut slices through the curve γ. So the antiderivative is not analytic everywhere on γ, and so the
fundamental theorem does not apply. Figure 5 shows the circle of radius R, and the branch cut,
and you see how they slice through.

Now, frankly, this is bizarre. The function f(z) = z−1 is perfectly well-defined and analytic on
the curve γ. It turns out, though, that somehow the integral “sees” inside the curve and notices
there is a place where z−1 is not analytic. Namely, it is undefined at the point z = 0. It is also
interesting to notice that the integral always gives 2πi, no matter what size the radius of the circle
is.

The next section discusses the general results related to this phenomena.

1.9 The Cauchy Theorems

The Cauchy theorems tell us what happens when we integrate an analytic function around a simple
closed curve. A lot of mathematics is done in describing precisely what a “simple closed curve” is,
what the inside of a closed curve is, and what it means to deform one curve into another. We will
keep things easy here and just take some intuitive ideas as to what these are.

A simple closed curve is a curve in the complex plane that is continuous, piecewise differentiable,
does not intersect itself, and forms a loop (the end equals the start.) The inside of a closed curve
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Figure 1.6: Some curves. a) is a simple oriented curve, which is not closed. b) is a simple closed
curve, oriented counterclockwise. c) is a closed curve, but not simple as it intersects itself. d) is a
closed curve which wraps around the point x twice. e) is also a simple closed curve, although it is
pretty wiggly.

are all those points on the plane that are separated from infinity by the curve. Figure 6 gives a few
examples of curves, some simple, some closed.

The first of the Cauchy theorems tells us that integrating an analytic function around a closed
curve gives zero. Its precise statement is this:

Theorem 3 (Cauchy’s theorem) Suppose γ is a simple closed curve, and f(z) is analytic both
on γ and at every point inside γ. Then ∫

γ
f(z) dz = 0. (1.156)

The next Cauchy theorem is the deformation theorem, and it concerns what happens when you
have two curves that can be “deformed” on in to the other. The definition of what it means for
two curves to be similar in this precise sense is as follows:

Two closed curves are homotopic in a region D if one can be continuous deformed into the other
without ever leaving the region D. The idea is to stretch out one curve into the other, without
breaking it, and without passing through any holes in the region. Figure 7 shows some curves which
are homotopic, and not homotopic, in a region with a hole in it.

The deformation theorem simply says that integrating the same analytic function around two
different, but homotopic curves, will give you the same value. The precise statement is as follows:

Theorem 4 (Deformation theorem) Suppose γ1 is a simple closed curve, that can be continu-
ously deformed into another curve γ2 inside a region D, and f(z) is analytic on all of this region.
Then ∫

γ1

f(z) dz =
∫
γ2

f(z) dz. (1.157)

So, for instance, in Figure 7, integrating a function like 1/z around curve A will give you the same
answer as integrating around curve B, provided the point 0 is inside the hole of the shaded region.
In fact, from the last section, we know the value of the integral is 2πi for either curve. For curve
C, though, the integral will be zero, by the first Cauchy theorem.

The third Cauchy theorem tells us that by introducing a simple singularity in the integrand, we
can find the value of an analytic function at a point inside a curve γ by integrating on the curve.
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Figure 1.7: Curves A and B can be continuously deformed one into the other, without leaving the
shaded region. They are homotopic. However, curve C cannot be deformed into A or B, because
it doesn’t go around the hole.

The singularity we introduce is by replacing f(z) with f(z)/(z−z0). The statement of the theorem
is as follows:

Theorem 5 (Cauchy Integral Formula) Suppose γ is a simple closed curve, oriented counter-
clockwise, and f(z) is analytic both on γ and at every point inside γ. If z0 is any point inside the
curve, then

f(z0) =
1

2πi

∫
γ

f(z)
z − z0

dz. (1.158)

In particular, the value of f at any point z0 inside the curve is completely determined by the values
of f on the curve.

By differentiating this formula with respect to z0, we get immediately the Cauchy Integral
Formula for derivatives:

Theorem 6 (CIF for derivatives) Suppose γ is a simple closed curve, oriented counterclock-
wise, and f(z) is analytic both on γ and at every point inside γ. If z0 is any point inside the curve,
then the k-th derivative is given as

f (k)(z0) =
k!

2πi

∫
γ

f(z)
(z − z0)k+1

dz. (1.159)

In particular, the value of f and all its derivatives at any point z0 inside the curve is completely
determined by the values of f on the curve.
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As a simple application of the Cauchy integral theorem, we get Liouville’s theorem which tells
us that an analytic function which is defined everywhere on the complex plane either blows up at
infinity (i.e. is unbounded), or it is constant:

Theorem 7 (Liouville’s Theorem) Suppose f(z) is entire, and bounded on C. Then f(z) must
be constant.

The proof of this is so fast, we can do it here. By the CIF for derivatives, we compute the first
derivative of f at an arbitraty point z0, as the integral

f ′(z0) =
1

2πi

∫
γ

f(z)
(z − z0)2

dz, (1.160)

where we take γ to be a circle of radius R centered at z0. Since f is bounded, the integrand
f(z)/(z− z0)2 is no bigger (in absolute value) than M/R2, where M is the bound on |f(z)| and R2

is the length of (z − z0)2. Thus we have

|f ′(z0)| ≤ 1
2π

∫
γ

M

R2
|dz| ≤ 1

2π
M

R2
length(γ) =

M

R
, (1.161)

since the length of γ is just 2πR. We notice that the inequality |f ′(z0)| ≤M/R holds for all values
of radius R, so we must have f ′(z0) = 0. But now, since z0 was arbitrary, we have f ′(z) = 0 for all
values of z. Thus, the derivative of f is zero everywhere, and so f must be a constant. QED.

Notice that this is much different than the case of functions on the real line. For instance, the

functions cos(x) and
1

1 + x2
are bounded, smooth functions on the whole real line. But they are

not constant.

Corollary 8 (The Fundamental Theorem of Algebra) Any polynomial in z must have a root
in the complex plane. In particular, any polynomial of degree n can be factored as the product of n
linear terms, with

zn + an−1z
n−1 + an−2z

n−2 + · · ·+ a1z + a0 = (z − z1)(z − z2) · · · (z − zn), (1.162)

where z1, z2, · · · , zn are the n roots of the polynomial.

The proof is easy. We write

f(z) =
1

zn + an−1zn−1 + an−2zn−2 + · · ·+ a1z + a0
, (1.163)

which is analytic everywhere that the polynomial is non-zero. If the polynomial is never zero, then
this is an entire function. As z → ∞, the function behaves like 1/zn, and so the limit at infinity
is zero. Thus the entire function f(z) is bounded on the complex plane. And thus by Liouville’s
theorem, it is constant. Which is obviously impossible (for n ≥ 1.)

Thus it must be the case that the polynomial is zero at some point z1. Thus we have shown
the existence of at least one root of the polynomial.

The rest is algebra. We can factor out the root, so

zn + an−1z
n−1 + an−2z

n−2 + · · ·+ a1z+ a0 = (z− z1)(zn−1 + bn−2z
n−2 + bn−3z

n−3 + · · ·+ b1z+ b0),
(1.164)

which is a linear term times a degree n − 1 polynomial. By the previous argument, this next
polynomial has some root z2. Thus we can factor out another linear term, (z − z2). Repeat, until
all n roots have been extracted. QED.

You might ask yourself: how can you prove the fundamental theorem of algebra using only
algebra, and not analysis. Off the top of my head, I don’t know!
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1.10 Proofs of the Cauchy theorems

Cauchy theorem - use Green’s theorem, and the Cauchy-Riemann equations.
Deformation theorem - connect the curves, and make one big curve where the function is analytic

inside, and use the 1st Cauchy theorem.
CIF - reduce to computing

∫ f(z)−f(z0)
z−z0 .

CIF for derivatives: just differentiate under the integral sign.

1.11 Applications of the Cauchy Integral Formula

Compute
∫∞
−∞

1
1+x2 dx = π using a Cauchy type integral. Also try

∫∞
−∞

sin(x)
x dx.
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Chapter 2

Signals and systems

In signal processing, we are mainly interested in signals and systems. A typical signal might be
a sound, a bit of music, a photographic image, a seismic vibration, or just about any physical
phenomena that can be measured over time and/or space. Usually, we represent a signal by a
function f(t), where t is time, and f(t) is the value measured at time t. For an image, we would
have a function of two variables f(x, y), where f represents the intensity of the image at position
x, y in the plane, say.

A system takes one signal in, and outputs another signal. It could be a physical system: an
earthquake in India starts a signal (vibrations) on one side of the earth, the earth transmits the
vibrations to the other side (the system), and a new signal is felt in Calgary (the received vibrations).
It could be an electrical system: a sound is picked up by a microphone (the input signal), the signal
is passed to a stereo amplifier (the system), and the resulting amplified signal is output to the
speakers (the output signal). It could be a computational system: a string of numbers is input to a
computer, the computer churns away on the numbers (adding, subtracting, multiplying, etc – the
system), and a string of numbers is output by the computer. It could be a combination of such
systems: a digital camera captures a real image through its lens, the intensities are converted to a
function f(x, y), and then the computer mucks around with the values of the function to compute a
sharper image, represented by a new function g(x, y). Here, the input is the real image, the system
is the camera/computer, the output is the function g(x, y).

The point is: signals are function, and systems operate on signals.

2.1 Sampling

The signal f(t) is a function on the real line R. When we compute with a computer, usually we
can’t know everything about the function, or store it all on the computer. So we just evaluate
the signal at a sequence of times tn, and define a vector x = (. . . , x−2, x−1, x0, x1, x2, . . .) with
components

xn = f(tn), for all n ∈ Z. (2.1)

For reasons that have mostly to do with engineering technology, we usually take the time samples
tn to be uniformly spaced. That is, we have a sequence of numbers separated by a uniform step
∆t, and write t0 = 0, t1 = ∆t, t2 = 2∆t, . . ., and so the vector x has components

xn = f(n∆t), for all n ∈ Z. (2.2)

Although the vector x is infinitely long, that is it has infinitely many components, it is important
to realize that most of the component xn are just zero. Why? Because we can’t measure back to

25
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time minus infinity, or forward to plus infinity. So at some point we sop measuring, and can just
assume everything else is zero.

The vector x is called a sampled signal. ∆t is called the sampling interval. 1/∆t is called the
sampling rate.

2.2 Aliasing

The problem with sampling is that you lose information in the process. Two different functions
f(t) and g(t) might get sampled and produce the same vector x. For instance, suppose f is a sine
wave, f(t) = sin(t) and g is the zero function, g(t) = 0. These are two very different signals. But,
with the sampling interval ∆t = π, we see that

xn = f(nπ) = sin(nπ)
= 0
= g(nπ),

so f and g get sampled to appear as the same vector x, which happens to be the zero vector. This
is called aliasing: one signal appears the same as another.

2.3 Frequency aliasing

There is a special kind of aliasing, where two sinusoidal signals appear the same under sampling.
A complex sinusoid is a function of the form

f(t) = e2πiωt = cos(2πωt) + i sin(2πωt). (2.3)

This signal is periodic, which repeats itself at a rate of ω cycles per unit time. Eg. f(t) = e2πi60t

represents a 60 Hertz signal, where t is measured in seconds. Two signals

f(t) = e2πiω1t g(t) = e2πiω2t, (2.4)

will get aliased at a sample interval ∆t if

f(n∆t) = g(n∆t) for all integers n. (2.5)

Equivalently,
(e2πiω1∆t)n = (e2πiω2∆t)n for all integers n, (2.6)

or more simply, if e2πiω1∆t = e2πiω2∆t. A bit of algebra shows this happens if ω1 − ω2 = N/∆t, for
some integer N .

Thus, two sinusoids get aliased if the difference of their frequencies ω1 − ω2 is a multiple of the
sampling rate 1/∆t.

Usually, we are interested in measuring signals with frequencies in some interval [−F, F ]. So, for
instance, you might like to measure frequencies ω1, ω2 in [−400Hz, 400Hz]. The difference ω1−ω2

could be as big as 800Hz. In order for this to not be a multiple of the sample rate, we have to
choose a sample rate bigger than 800Hz. That is,

800Hz ≤ 1
∆t

. (2.7)

Being a little big lazy, we might choose the sample rate to be 1000Hz, and so the sampling interval
is ∆t = .001 second (a millisecond).
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2.4 Sampled signals as a vector space

The sampled signal
x = (. . . , x−2, x−1, x0, x1, x2, . . .) (2.8)

is supposed to look like a vector, just as you learned in linear algebra. It just happens to be
infinitely long. You can still treat as you would regular vectors: add, subtract, pointwise multiply,
scalar multiply, and take inner products. For instance, write

x = (. . . , 0, 0, 1, 2, 3, 0, 0, . . .)
y = (. . . , 0, 0, 4, 5, 6, 0, 0, . . .)

x + y = (. . . , 0, 0, 5, 7, 9, 0, 0, . . .)
y − x = (. . . , 0, 0, 3, 3, 3, 0, 0, . . .)
x · y = (. . . , 0, 0, 4, 10, 18, 0, 0, . . .)
10x = (. . . , 0, 0, 10, 20, 30, 0, 0, . . .)
10y = (. . . , 0, 0, 40, 50, 60, 0, 0, . . .)
〈x,y〉 = 1 · 4 + 2 · 5 + 3 · 6 = 32.

It is a nuisance to keep writing all these zeros in the infinite vectors, so sometimes we shorten
things to condensed vectors, like x = (1, 2, 3) and y = (4, 5, 6). In this form, we have the 0-th entry
in x as the first number that appears in the short vector. So x0 = 1, x1 = 2, x2 = 3, and the rest
are zero.
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Chapter 3

Convolving signals

3.1 Z transforms

The Z transform of the signal
x = (. . . , 0, 0, 1, 2, 3, 0, 0, . . .) (3.1)

is the polynomial
X(Z) = 1 + 2Z + 3Z2. (3.2)

The Z transform of the signal
y = (. . . , 0, 0, 4, 5, 6, 0, 0, . . .) (3.3)

is the polynomial
Y (Z) = 4 + 5Z + 6Z2. (3.4)

In general, for a signal x = (. . . , x−2, x−1, x0, x1, x2, . . .), the Z transform is the polynomial

X(Z) =
∑
n

xnZ
n. (3.5)

Notice that if there are non-zero xn with n < 0, the polynomial could include negative powers of
Z. So, for instance, if

x−1 = 3, x0 = 5, x1 = 7, (3.6)

then
X(Z) = 3Z−1 + 5 + 7Z. (3.7)

3.2 Convolution

Any two signals x,y can be combined in a special operation called convolution. An easy way to
define the convolution is using the Z transform. So, for example, if

x = (. . . , 0, 0, 1, 2, 3, 0, 0, . . .)
y = (. . . , 0, 0, 4, 5, 6, 0, 0, . . .),

we have Z transforms X(Z) = 1 + 2Z + 3Z2, Y (Z) = 4 + 5Z + 6Z2. Take the product of the two
polynomials,

(1 + 2Z + 3Z2)(4 + 5Z + 6Z2) = 4 + 13Z + 28Z2 + 27Z3 + 18Z4, (3.8)

29
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which we can recognize as the Z transform of the vector

(. . . , 0, 0, 4, 13, 28, 27, 18, 0, 0, . . .) (3.9)

which we define as the convolution of x with y. That is,

x ∗ y = (. . . , 0, 0, 4, 13, 28, 27, 18, 0, 0, . . .). (3.10)

There is a general formula for convolution: if you think about how polynomial multiplication
works, it is pretty easy to see that the n-th entry in the vector x ∗ y will be a sum of terms like
xjyk, where j + k = n. In other words, we can write

(x ∗ y)n =
∑
k

xn−kyk. (3.11)

Because we know how polynomial multiplication works, we can observe that convolution works in
either order and gives the same answer: x∗y = y∗z. Also, the convolution operation distributes over
addition: x∗(y+z) = (x∗y)+(x∗z): because multiplication of polynomials distributes over addition.
You can also move in scalar constants quite freely, so for instance, 3(x ∗ y) = (3x) ∗ y = x ∗ (3y),
which is clear from the summation formula defining convolution.

3.3 Convolution as matrix-vector multiplication

Notice we can organize a matrix and a vector to get the same result as the convolution in the last
section. We just do the simple x,y example:

1 0 0 0 0
2 1 0 0 0
3 2 1 0 0
0 3 2 1 0
0 0 3 2 1




4
5
3
0
0

 =


4
13
28
27
18

 . (3.12)

The matrix representing x is constant along diagonals. That is called a Toeplitz matrix. y is
organized as a column vector. The usual matrix-vector product that we learned in linear algebra
gives the resulting column vector representing x ∗ y.

Notice that although x,y had only three non-zero entries, the matrix had to be 5 by 5, and
the vector 5 by 1, in order for the arithmetic to work out. Similarly, for vectors with N non-zero
entries (all in a row), we need matrices of size 2N + 1.

3.4 Convolution as matrix-matrix multiplication

We observe that we can also represent convolution as the product to two Toeplitz matrices:
1 0 0 0 0
2 1 0 0 0
3 2 1 0 0
0 3 2 1 0
0 0 3 2 1




4 0 0 0 0
5 4 0 0 0
6 5 4 0 0
0 6 5 4 0
0 0 6 5 4

 =


4 0 0 0 0
13 4 0 0 0
28 13 4 0 0
27 28 13 4 0
18 27 28 13 4

 . (3.13)

Check the matrix multiplication; you will see this is correct. Again, the matrices have to be large
enough to give room for the whole convolution to appear.

You could write out infinite matrices, but it’s too hard to typeset at the moment!
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3.5 Convolution by flipping and shifting

You can also obtain a convolution by flipping the order of one of the vectors, taking point-wise
products, and sum. So, for instance, with the same x,y as in the previous section, we flip around
the y and write it underneath the x vector:

. . . 0 0 1 2 3 0 . . .

. . . 6 5 4 0 0 0 . . .
. (3.14)

The pointwise product is
. . . 0 0 4 0 0 0 . . . (3.15)

which sums up to 4, the first component of the convolution. To get the second component, we shift
y once, and line up the vectors as

. . . 0 0 1 2 3 0 . . .

. . . 0 6 5 4 0 0 . . .
. (3.16)

The pointwise product is
. . . 0 0 5 8 0 0 . . . (3.17)

which sums up to 13, the second component of the convolution.
To get the third component, we shift y again, and line up the vectors as

. . . 0 0 1 2 3 0 . . .

. . . 0 0 6 5 4 0 . . .
. (3.18)

The pointwise product is
. . . 0 0 6 10 12 0 . . . (3.19)

which sums up to 28, the third component of the convolution. And so on. This works in general.

3.6 Convolution as a system

Fixing a vector h, we define a system that acts on signals x as

x→ A(x) = h ∗ x = y. (3.20)

That is, for input signal x, our system outputs a signal y that is computed as y = h ∗ x.
From our description of convolution as matrices, just like in linear algebra, we certainly expect

that this system is linear. That is,

A(x1 + x2) = A(x1) +A(x2),
A(αx) = αA(x).

This is easy to verify from the formulas for convolution. Equivalently, the first equation follows
since convolution distributes over addition, h ∗ (x1 + x2) = h ∗x1 + h ∗x2, and the second equation
follows since multiplication by a scalar commutes with polynomial multiplication.
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3.7 The shift operator

The shift operator, S, is an example of a system. It takes an input x and outputs the same vectors,
except shifted to the right by one unit. So for instance, with

x = (. . . , 0, 0, 1, 2, 3, 0, 0, . . .)
then Sx = (. . . , 0, 0, 0, 1, 2, 3, 0, . . .).

In general, with

x = (. . . , x−2, x−1, x0, x1, x2, x3, . . .)
then Sx = (. . . , x−3, x−2, x−1, x0, x1, x2, . . .).

In terms of vector components, we can see that

(Sx)n = xn−1. (3.21)

It will be useful to notice that the operator S can be expressed as a convolution. We write δ1 to
be the special signal which is zero in all its components, except at the n = 1 place, where it takes
the value 1. That is,

δ1 = (. . . , 0, 0, 0, 1, 0, 0, . . .), (3.22)

where the 1 in the vector is placed exactly at the n = 1 place. Then

δ1 ∗ x =
∑
k

xn−kδ
1
k = xn−1 · 1 + a bunch of zeros. (3.23)

Thus δ1 ∗ x = Sx, which shows convolution by δ1 is the same as shifting by 1.
It is easy to check that convolution by δn is the same as shifting by n steps (to the right, when n

is bigger than zero, to the left when n is less than zero). This is the same as applying the operator
S to the signal n times, which we denote by Sn.

You can think of δn as the vector

δ1 = (. . . , 0, 0, 0, 0, 0, 1, 0, 0, . . .), (3.24)

where the 1 in the vector is placed exactly at the n-th spot.
You can think of the operator S as a matrix of the form

S =


0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 , (3.25)

which is a Toeplitz matrix with ones just below the main diagonal. So, for instance, we apply this
matrix to the vector x = (. . . , 0, 0, 1, 2, 3, 0, . . .) in a short form, to see

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0




1
2
3
0
0

 =


0
1
2
3
0

 . (3.26)
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That is, this matrix applied to x just shifts it.

Of course, for longer signals x, we need a bigger matrix to represent the shift S. But the idea
is the same. S will always have ones just below the main diagonal.

3.8 Signals as sums of δn’s.

Look how we can write a 3-component vector as a linear combination of three basic vectors:

(1, 2, 3) = 1 · (1, 0, 0) + 2 · (0, 1, 0) + 3 · (0, 0, 1). (3.27)

For our infinite vectors, we can do something similar:

x = (. . . , 0, 0, 1, 2, 3, 0, 0, . . .)
= 1 · (. . . , 0, 0, 1, 0, 0, 0, 0, . . .) + 2 · (. . . , 0, 0, 0, 1, 0, 0, 0, . . .) + 3 · (. . . , 0, 0, 0, 0, 1, 0, 0, . . .)
= 1 · δ0 + 2 · δ1 + 3 · δ2.

That is, the vector x is written as a linear combination of those basic vectors δn that we saw in the
last section.

In general, any signal x can be written in the form

x =
∑
n

xnδ
n. (3.28)

Notice in this formula, x is a vector, each δn is a vector, but the xn are just numbers.
We need this for the proof in the next chapter.
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Chapter 4

Linear, shift-invariant systems

We want to find out what are the linear, shift-invariant systems. Linear means the system is
relatively simple in that sums of input signals map to sums of output signals, while shift-invariant
means if we delay the input signal, the resulting output signal is the same as before, only delayed.
This is also a reasonable assumption for a system that does not change over time.

We express these conditions on a system A in the following equations:

A(x1 + x2) = A(x1) +A(x2), for all signals x1,x2,
A(αx) = αA(x), for all signals x, scalars α,
A(Sx) = SA(x), for all signals x,

where S is the shift operator.

Theorem 9 Suppose A is a linear, shift-invariant system. Then there is a vector h so that A is
just convolution by h. That is,

A(x) = h ∗ x, for all signals x. (4.1)

The proof will go like this. h is just A applied to the delta vector δ0, the vector with zeros
everywhere except at the n = 0 spot. We then use shift invariance to find that A acting on any
δn is just that delta function, convolved with h. We then use linearity to conclude A acts on any
vector by convolving with h.

The details are like this. Let h = A(δ0), which is a vector, since A acts on the given input
vector δ0 to produce some output vector, which we call h. We note the shift operator S takes the
vector δ0 to δ1, so by shift-invariance, we see

A(δ1) = A(Sδ0) = S(A(δ0)) = Sh = h ∗ δ1, (4.2)

since by definition, A(δ0) is h, and applying S to h is the same as convolving by δ1.
Repeating this argument, we see that A(δn) = A(Snδ0) = SnA(δ0) = Snh = h ∗ δn. So now we

know that A, applied to any of the delta vectors, just gives h convolved with the vector.
Now, any vector x is a linear combination of the δn, so by linearity of A, we have

A(x) = A(
∑

xnδ
n) =

∑
xnA(δn) =

∑
xnh ∗ δn = h ∗ (

∑
xnδ

n) = h ∗ x, (4.3)

where at the second last equality, we use the fact that convolution by h is linear.
And that’s it. If you want to worry about mathematical details, you should worry about whether

these infinite sums converge. For our purposes, we can just assume the x is always given by a finite
sum. (All but finitely many of the xn are zero.)
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4.1 Impulse response of a LSI system, Z transform

The vector h that appeared in the last section is call the impulse response of the system A. From
an engineering point of view, it is the response of the system to getting a whack at time t = 0.
Knowing the impulse response basically tells you everything you need to know about the linear,
shift invariant system.

The Z transform of the system A is given as the Z transform of the impulse response h, which
is the polynomial

H(Z) =
∑
k

hkZ
k, (4.4)

which we discussed before.



Chapter 5

Building practical LSI systems

In this chapter we discuss two standard ways of implementing LSI systems on a computer: The
FIR and IIR systems. Their advantage is that the outputs of the systems can be computed with
only a finite amount of calculation by the computer.

5.1 FIR systems, minimum phase, maximum phase

A Finite Impulse Response (FIR) system is a linear, shift-invariant system where the impulse
response function h only has finitely many non-zero coefficients hn. These are particularly useful
in computations, since only finite sums are needed to compute them.

As an example, let’s take h = (6, 1,−1) (in our short vector notation). The LSI system x →
h ∗ x = y is given by the formula

yn = 6xn + xn−1 − xn−2, for all n. (5.1)

See how there is only 3 terms in the sum given by the convolution with h.
This is an example of a causal system: the value of yn depends only on the value of xn and

earlier coefficients in x. In general, a LSI system with be causal if the impulse response h is zero
on the negative integers.

For the example above, the Z transform is the polynomial

H(Z) = 6 + Z − Z2. (5.2)

Notice this polynomial factors, as (6 +Z −Z2) = (3−Z)(2 +Z). The linear terms (3−Z), (2 +Z)
are called couplets. From the couplets, we can see the zeros of this polynomial are Z = 3 and
Z = −2. These zeros have magnitude bigger than one, so they live outside the unit circle in the
complex plane. Because of this, we say the system is minimum phase.

By the Fundamental Theorem of Algebra, any polynomial can be factored into couplets. The
zeros can be identified as points on the complex plane. If the zeros are all outside the unit circle,
we say the system is minimum phase. If the zeros are inside the unit circle, we say the system is
maximum phase. If some zeros are inside the circle, and some are outside, we say the system is
mixed phase.

Minimum and maximum phase will have something to do with delays in our systems, which we
will see later.
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5.2 Recursive (IIR) systems

When the impulse response h of a LSI system has infinitely many non-zero coefficients, we say the
system is an Infinite Impulse Response (IIR) system. From a computational point of view, this is
a nuisance since the direct convolution formula

yn =
∑
k

xn−khk (5.3)

has an infinite sum in it, which our computer will choke on.
However, there is a nice little structure that allows us to compute some IIR systems with only

finite sums. This structure feeds back the earlier y values into the computation, and hence is called
a recursive system.

It is probably best understood with a simple example.
Suppose we have a formula to compute output y in terms of x, in the form:

yn = xn +
1
2
yn−1. (5.4)

This is a finite sum (only two terms), and assuming we know the earlier output coefficients
. . . , yn−3, yn−2, yn−1, we can always compute the next yn.

Let’s see what the impulse response is. With x = δ0, we have that all the xn equal zero, except
for x0 = 1. We can assume then that all the earlier yn are zero, for all n < 0. Then, we find

y0 = x0 +
1
2
y−1 = 1 +

1
2
· 0 = 1

y1 = x1 +
1
2
y0 = 0 +

1
2
· 1 =

1
2

y2 = x2 +
1
2
y1 = 0 +

1
2
· 1

2
=

1
4

. . .

yn =
1
2n
, for each n ≥ 0

Thus, the impulse response is the signal h = (. . . , 0, 0, 1, 1
2 ,

1
4 ,

1
8 , . . .), which is an infinite impulse

response. The Z transform of the system is thus

H(Z) = 1 +
Z

2
+
Z2

4
+
Z3

8
+ · · ·+ Zn

2n
+ · · · , (5.5)

which we recognize as a geometric series, so we can sum it to

H(Z) =
1

1− Z/2
. (5.6)

Notice the linear polynomial in the denominator as a root at Z = 2. This point is called a
pole of the filter. Because this root is outside the unit circle, we would call this a minimum phase
system.

5.3 Rational functions and IIR systems

Here is another way to compute the Z transform of an IIR system. Using the same example as in
the last section, we write a simple recursive system as

yn = xn +
1
2
yn−1. (5.7)
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Pulling the y′s onto the lefthand side, we have

yn −
1
2
yn−1 = xn, (5.8)

which we can express as a convolution,

g ∗ y = x, (5.9)

where g = (1,−1/2) is the vector of coefficients for the convolution on the y side of the equation.
Taking Z transforms of everything in the last equation, we have

G(Z)Y (Z) = X(Z), (5.10)

which we rewrite as

Y (Z) =
1

G(Z)
X(Z). (5.11)

Notice that since g is a short vector, its Z transform is easily computed, as G(Z) = 1− Z/2. The
fraction 1

G(Z) = 1
1−Z/2 is the system response of the LSI with impulse response h as in the last

section. Notice it agrees with the geometric series summation we did in the last section.
A general recursive system is written like this:

yn =
N∑
k=0

fkxn−k −
M∑
k=1

gkyn−k, (5.12)

where f = (f0, f1, . . . , fN ) and g = (1, g1, g2, . . . , gM ) are some fixed coefficients that will determine
our LSI system. By carefully choosing g0 = 1, we can rewrite the last equation as two convolutions,
so

M∑
k=0

gkyn−k =
N∑
k=0

fkxn−k, (5.13)

or more succinctly in vector form as

g ∗ y = f ∗ x. (5.14)

Taking Z transforms, we have

G(Z)Y (Z) = F (Z)X(Z), (5.15)

which we write in input-output form as

Y (Z) =
F (Z)
G(Z)

X(Z). (5.16)

The function

H(Z) =
F (Z)
G(Z)

=
f0 + f1Z + f2Z

2 + · · ·+ fNZ
N

g0 + g1Z + g2Z2 + · · · gMZM
(5.17)

is the Z transform of the LSI systems. Notice it is the ratio of two polynomials in Z, which is an
example of a rational function in complex analysis.
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5.4 Zeros and poles

By the fundamental theorem of algebra, the polynomials in a rational function can always be
factored into a product of linear terms, so

H(Z) =
F (Z)
G(Z)

=
f0 + f1Z + f2Z

2 + · · ·+ fNZ
N

g0 + g1Z + g2Z2 + · · · gMZM

=
fN
gM

(Z − z1)(Z − z2) · · · (Z − zN )
(Z − p1)(Z − p2) · · · (Z − pM )

where the complex numbers z1, . . . , zN are the roots of the polynomial on top, and p1, . . . , pM are
the roots of the polynomial on the bottom. The zk are called the zeros of the function H(Z), and
the pk are called the poles of the function. This is because, as a complex analytic function, H(Z)
is equal to zero at the zk, and blows up (division by zero) at the pk.

5.5 Stability of recursive LSI systems

Fix a complex number α and define a recursive LSI system as

yn = xn + αyn−1. (5.18)

Computing the impulse response as we did above for the simple example, we see that the impulse
response is just

h = (. . . , 0, 0, 1, α, α2, α3, . . . , αn, . . .). (5.19)

This sequence will go to zero if |α| < 1, but will blow up with |α| > 1. The first case is called
stable, while the second case is called unstable. Notice that the reciprocal 1/α is the single pole in
thus LSI system, since G(Z) = 1 − αZ has a root at Z = 1/α. Thus the stability of this simple
system depends on the location of the pole 1/α: outside the unit circle, the system is stable. Inside
the unit circle, it is unstable.

This result generalizes. Given a rational function

H(Z) =
F (Z)
G(Z)

, (5.20)

the corresponding LSI system is stable if all the poles are outside the unit circle. It is unstable if
the poles are inside the unit circle.

Try not to worry about the case when the poles are exactly on the unit circle. Generally
speaking, they tend to be unstable due to small numerical errors that build up on the computer.

5.6 Example: a smoothing system. FIR and IIR

Let’s imagine you want to design a system that smooths out any given input signal. For instance,
with a photo, you might want to blur out some details so that certain faces cannot be identified.
Or, if you are building an electrical system, you might realize sudden jumps in current are bad
for the electronic devices, so you want to smooth out any jumps. Or you are building a car, and
sudden jerks and shocks in the motion will annoy the passengers, so you want to smooth those out.
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Without explaining why, here are two smoothers. The first is an FIR, non-recursive system.
We choose h to be the vector

h = (. . . , 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, . . .). (5.21)

That is, h has 10 ones in it, the rest are zero. (This is sometimes called a boxcar, because its graph
looks like a chunky boxcar on a train.) The system x→ h ∗x = y is given from the convolution as
the term-by-term sum

yn = xn + xn−1 + xn−2 + · · ·+ xn−9. (5.22)

If we take a simple boxcar x = (. . . , 0, 0, 1, 1, 1, . . . , 1, 1, 1, 0, 0, . . .) as an input, it is easy to
compute by hand what the output is: the ones will sum up as an increasing sequence, gets as big
as 10, stays there for a while, and comes down. (You should try this yourself.) The output is thus

y = (. . . , 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 10, . . . , 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, . . .). (5.23)

This ramp y is a bit smoother than the original boxcar input x. Figure 5.1 shows the x and the y.

Figure 5.1: FIR smoother: A boxcar input x and its smoothed output y.

Now, we could choose a different h to get a different kind of smoothing operation. But, let’s
now do something completely different. Let’s build a recursive system of the form

yn = xn + 0.9yn−1. (5.24)

Now, with the same input x = (. . . , 0, 0, 1, 1, 1, . . . , 1, 1, 1, 0, 0, . . .), we can compute the output by
hand, as

y0 = x0 + 0.9y−1 = 1 + 0 = 1
y1 = x1 + 0.9y0 = 1 + 0.9 ∗ 1 = 1.9
y2 = x2 + 0.9y1 = 1 + 0.9 ∗ 1.9 = 2.71
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y3 = x3 + 0.9y2 = 1 + 0.9 ∗ 2.71 = 3.439
y4 = 4.0951
y5 = 5.2170
y6 = 5.6953
y7 = 6.1258
etc.

As you can see, the numbers aren’t pretty. But as you work it out, you will see they go up for
a while, level off, and then go down. We can plot this in MATLAB, and the input/output looks
something like Figure 5.2.

Figure 5.2: IIR smoother: A boxcar input x and its smoothed output y.

Again, we see that the output y is a smoothed out version of the input x. However, the details
are different from the FIR case in Figure 5.1. For instance, we don’t have a linear ramp going up
in the output, instead it is more of a smooth concave taper that creeps up to the value 10. And on
the way down, the curve is a smooth, convex curve leveling off at zero.

Which is better? Well, it depends on what you are using these things for. Notice that the
IIR system only uses one multiplication and one addition, to compute each yn. This can be an
advantage when speed is required. The FIR requires 10 additions, per sample yn, which is a lot.

Much of the interest in signal processing is in designing good systems, FIR or IIR, which are
fast to compute and do the required modifications on signals. We will get to this later.
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Frequency response of a LSI system

Given a linear, shift invariant system A, we know there is an impulse response vector h that
completely describe the system as a convolution,

x 7→ A(x) = h ∗ x. (6.1)

From this impulse response, we define the frequency response of the system as the function

H(ω) =
∑
k

hke
−iωk. (6.2)

Now, remembering that the Z transform is given by H(Z) =
∑

k hkZ
k, we see immediately that

the frequency response is obtained from the Z transform by setting Z = e−iω. That is, we have that
the frequency response is given as

H(ω) = H(Z), where Z = e−iω. (6.3)

Now, there might be a little confusion here because H(Z) can be thought of as a function of a
complete variable, but H(ω) is a function of the real parameter ω. But this notation is standard
in DSP, so we are kind of stuck with it.

You should notice that H(ω) is periodic in variable ω, since the exponential Z = e−iω is periodic.
So we have that H(ω + 2π) = H(ω), and thus H(ω) is completely determined by its values on the
interval [−π, π].

You should also be aware that some people (including me) like to use the definition

H(ω) =
∑
k

hke
−2πiωk, (6.4)

in which case H(ω) is a periodic function, with period one. It is completely determined by its
values on the interval [−1/2, 1/2]. Our textbook author Karl uses the other convention.

The function H(ω) tells us the frequency response of the system. Specifically, if we input a
sinusoid x of the form

xn = eiωn = cos(ωn) + i sin(ωn), (6.5)

where ω is a fixed number, then the output from our system A is just a multiple of the original,

A(x) = H(ω)x. (6.6)

That is, the output A(x) is just the original input x, multiplied by the fixed number H(ω). Roughly
speaking, this says “sine wave in, yields sine wave out.”
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Except we are using complex sinusoids here.
To see why this happens, let’s compute the convolution of xn = eiωn with the impulse response

h, to see the result of the system A(x) = h ∗ x = y. We have

yn =
∑
k

xn−khk

=
∑
k

eiω(n−k)hk

= eiωn
∑
k

eiωkhk

= xnH(ω).

That is, in vector notation,
y = H(ω)x, (6.7)

so the output y is some multiple of the input x.
This is another way of saying that the complex sinusoids are eigenvectors for the LSI system

A, with eigenvalues given as H(ω).

6.1 Frequency response of a simple smoother

Here is a simple example. Define an FIR system by the formula

yn =
1
3

(xn−1 + xn + xn+1). (6.8)

That is, we just average the sample xn with its nearest neighbours. This will tend to smooth out
a given input signal, like we saw in the example in Section 21.

The impulse response h has h−1 = h0 = h1 = 1/3, with all the other coefficients zero. The Z
transform of the system is

H(Z) =
Z−1 + 1 + Z

3
, (6.9)

and the frequency response is obtained by setting Z = e−iω, so

H(ω) =
eiω + 1 + e−iω

3
=

1
3

(1 + 2 cosω). (6.10)

A plot of this function is in Figure 6.1.
What should you notice. Well, first, the function H(ω) is real valued, which is nice, and perhaps

unexpected since we started with complex exponentials. Second, the function is symmetric about
ω = π, which also may seem unexpected, but happens a lot in filter design. Third, the function is
zero for certain values of ω, which means for certain sinusoid inputs, we can get a zero output. For
instance, with ω = 2π/3, we have H(ω) = 0. This means if we set input

xn = e2πin/3 =

(
−1

2
+
√

3
2
i

)n
(6.11)

we get output y = 0. (Think about your complex numbers. Any three consecutive xn are the three
different cube roots of unity, so the three of them sum to zero. Hence their three point average is
zero. Hence the total output is zero.)
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Figure 6.1: Plot of the frequency response H(ω) for a three point smoother.

You also should notice that H(ω) is negative for some values of ω, which indicates the sign of
the input signal can flip. This is easy enough to see, by taking x to be an alternating series of ±1,
and compute the output as an alternating series of ±1/3, but with the opposite signs. That is,
using x like this, we compute the three point moving average to find y as:

x = (. . . , 1, −1, 1, −1, 1, −1, . . .)
y = (. . . , −1

3 ,
1
3 , −1

3 ,
1
3 , −1

3 ,
1
3 , . . .)

(6.12)

See how the sign flips? See also how the magnitude is -1/3, just like the value of H(ω) on the
graph, at its lowest point.

The point is, the function H(ω) tells us a lot about how the system behaves. In fact, from
H(ω), we can learn everything about the system.

6.2 A better three point smoother

Frankly, in the last example, it is weird to have negative values for H(ω), and weird for it to be zero
at a frequency ω = 2π/3. It seems it would be better for a smoother to pass the low frequencies,
and attenuate the high frequencies, only hitting zero at the point ω = π. That is, we might want a
filter response like the curve in Figure 6.2. With some inspired thinking, we can get this using the
cosine function, shifted up by one, so we write

H(ω) =
1
2

(1 + cosω) =
1
4

(2 + e−iω + eiω), (6.13)

as our desired frequency response. Examining this carefully, we see that this is the frequency
response of a system with Z transform

H(Z) =
1
4

(Z−1 + 2 + Z). (6.14)
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Figure 6.2: Plot of the frequency response H(ω) for a better three point smoother.

From this, we see the impulse response is

h = (. . . , 0, 0,
1
4
,
2
4
,
1
4
, 0, 0, . . .). (6.15)

Thus, we can define our better three point smoother using this h, and find

yn =
xn−1 + 2xn + xn+1

4
. (6.16)

This way, the output yn is a weighted average of input xn and its nearest neighbours. It turns out,
for many reasons, that this is a better smoother for our system.

6.3 Linear algebra notes: Eigenvalues and eigenvectors

This has been moved to an appendix at the end of the book.

6.4 A rant on radians

The book (and many practitioners) insist on parameterizing frequencies ω in measures of radians
per unit time. So, for instance, with a sinusoidal signal in the form

f(t) = eiωt (6.17)

where t is measured in seconds, ω = 1 corresponds to oscillations of one radian per second, while
ω = 10 corresponds to oscillations of ten radians per second. Figure 6.3 shows plots of these two
sinusoids (the imaginary part), and it is hard to see what 1 rad, or 10 rad, means.
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Figure 6.3: Sine waves at 1 rad per second (left) and 10 rad per second (right). These are not
natural units!

Compare this to the more natural system of parameterizing frequencies ω in measures of cycles
per second. With this parameterization, we write a sinusoidal signal in the form

f(t) = e2πiωt. (6.18)

Again with time measured in seconds, then ω = 1 corresponds to oscillations of one cycle per
second, while ω = 10 corresponds to oscillations of ten cylces per second. Figure 6.4 shows plots
of these two sinusoids (the imaginary part), and we clearly see in the plots the one cycle, and ten
cycles, respectively.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Figure 6.4: Sine waves at 1 cycle per second (left) and 10 cycles per second (right). This is natural.

With this in mind, from now on in the course we will use natural parameterization of ω in cycles
per unit of time, even though this conflicts with the book. (It turns out to have some mathematical
benefits as well, in that the natural Fourier transform is automatically normalized, which we will
see later.)

6.5 Symmetries of frequency response H(ω) in natural units.

With these natural units in mind, we define the frequency response of a system with impulse
response h = (. . . , h−1, h0, h1, . . .) as

H(ω) =
∑
k

hke
−2πikω, (6.19)
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which is the eigenvalue for the (sampled signal) eigenvector x at the corresponding frequency ω in
cycles per unit time given by

xn = e2πinω. (6.20)

You might like to check the algebra in Section 22 for this new parameterization. Everything works
out.

What’s different is that this new function H(ω) is 1-periodic; that is, it repeats itself as ω is
incremented by units of one. Thus,

H(0) = H(1) = H(2) = H(3) = . . .

H(0.2) = H(1.2) = H(2.2) = H(3.2) = . . .

H(0.4) = H(1.4) = H(2.4) = H(3.4) = . . .

etc.,

and in general, H(ω) = H(ω +N) for all integers N , and all real numbers ω.
This implies that it is enough just to look at the values of H(ω) on the interval [0, 1], since

it just repeats itself after that. So for instance, with the three point smoother considered earlier,
where h = (1/4, 1/2, 1/4), we have that

H(ω) =
1
2

(1 + cos 2πω), (6.21)

which we see plotted in Figure 6.5. Observe how the values on the interval [0, 1] (plotted in the solid
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Figure 6.5: 1-periodicity of the frequency response curve H(ω) for a 3 point smoother.

line) just get repeated in each subsequent interval. This is the periodicity of H(ω), with period
one.

It is common to plot only the values of H(ω) in the interval [0, 1], as shown in Figure 6.6 (left).
Also common is to plot it in the interval [−0.5, 0.5], Figure 6.6 (center). And since these frequency
response functions are often symmetric about 0, it is good enough to plot just the values in [0, 0.5],
Figure 6.6 (right).

You should get used to these three plots, as you will see all three in in different contexts.
MATLAB often displays the one on [0, 1], but also sometimes on [−0.5, 0.5]. Make sure you know
what you are looking at.
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Figure 6.6: The frequency response curve of a 3 point smoother. Three standard plots.

And what do these plots mean? Well, ω = 0 corresponds to a sinusoid with zero frequency
– one that does not oscillate at all. H(0) gives the DC response of the system – what it does
to constant signals. In our example H(0) = 1, so a DC signal is passed unchanged. The case
ω = 0.5 corresponds to a sinusoidal signal that is oscillating at 1/2 of the sampling rate. For a
system that samples at 10kHz, this would be a 5kHz signal. In our example, H(1/2) = 0, so our
3 point smoother will kill off this signals (a 5kHz signal is attenuated to zero amplitude). At an
intermediate point, say ω = 0.25, we find H(0.25) = .5 ∗ (1 + cos(π/2)) = .5, so a signal at 1/4 the
sampling rate will be attenuated by a factor of 1/2. Eg. at 10kHz sampling, the 2.5kHz signal is
attenuated by one half.

It is important to remember that ω is a measure of frequency relative to the sampling rate. So,
for instance with a sampling rate of 10kHz, the ω = 0.5 corresponds to a signal at frequency 5kHz.
For a CD system, the sampling rate is 44.1kHz. In this case, the same ω = 0.5 corresponds to a
signal at 22.05kHz. Just remember that ω is relative to the sampling rate (NOT the Nyquist rate).

In our example of the three point smoother, we saw the symmetry H(−ω) = H(ω); equivalently,
H is even. In the assignment, we saw that for symmetric impulse response, the frequency response
is a sum of cosines,

H(ω) = h0 + 2
∑
k

hk cos(2πkω), (6.22)

and thus this H(ω) is also even. That is, H(−ω) = H(ω).
This even property is not true in general. However, we have the following:

Theorem 10 Suppose the impulse response h = (. . . , h−1, h0, h1, . . .) is real-valued. Then the
frequency response function H(ω) satisfies a skew-symmetry,

H(−ω) = H(ω), for all ω, (6.23)

where the bar above means complex conjugate.

This is an important theorem since many systems we design must have real coefficients in them,
so we get the skew symmetry for free. It also implies the absolute value of the frequency response
is an even function, so

|H(−ω)| = |H(ω)| for all ω, (6.24)

since the absolute value is the same on any complex number and its conjugate.
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The proof of the theorem is easy. We just observe the sum at −ω is

H(ω) =
∑
k

hke
−2πik(−ω)

=
∑
k

hke−2πikω, the complex conjuate

=
∑
k

hke−2πikω, since hk is real

=
∑
k

hke−2πikω, by linearity

= H(ω),

as desired.

6.6 Magnitude and phase response

Since H(ω) is a complex number for each value of ω, it can be expanded in the form of a real
amplitude |H| = |H(ω)| ≥ 0 and a phase φ = φ(ω), with

H(ω) = |H(ω)|e2πiφ(ω). (6.25)

Both the amplitude and the phase have a specific physical meaning for action of the system on the
sinusoids of frequency ω.

Figure 6.7 shows this. Here we see a sine wave of a particular fixed frequency ω input into a
system, and we plot right next to it the output. We see the output is still basically a sine wave, but
with a small height, and shifted to the right. The change in amplitude is given by A = |H(ω)|, the
amplitude spectrum, and the amount of shift is given by φ = φ(ω), the phase spectrum. We have
to be careful, though: for a positive φ, the shift is to the left; for negative φ, it is to the right.

To see this, observe that if we start with a sampled sinusoid xn = e2πiωn, the

yn = H(ω)xn
= |H(ω)|e2πiφ(ω)xn

= |H(ω)|e2πi(ωn+φ(ω))

which is just a complex sinusoid of the same frequency, but with amplitude |H(ω)|, and shifted (to
the left) by phase φ(ω). Maybe it is easier to look at the, say, imaginary parts, with

Im(xn) = sin(2πωn)
Im(yn) = |H(ω)| sin(2π(ωn+ φ(ω))

So we see that the output is just a sine wave, but with amplitude |H(ω)| and phase shifted by
−φ(ω).

Think about what φ really measures. It is the shift, in units of a cycle at that frequency. So
φ = 0.5 corresponds to a shift by exactly half a cycle, at that frequency. Half a cycle, of course,
changes a sine wave to a negative sine wave. A shift of .25 changes a sine wave to a cosine wave.

A system that delays by exacly n samples (eg h = δn) , has a linear phase delay, φ(ω) = −nω.
Waves at different frequencies get shifted by different number of cycles – which makes sense, since
for higher frequencies, we have shorter cycles, so we must shift by more of them to get the delay of
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Figure 6.7: Input/output response with the amplitude and phase effect.

n samples. Linear phase delay is often a desirable characteristic, as it does not change the shape
of a given waveform — it just delays it.

In general, when one is designing filters (systems), we have to be concerned with specifying
both amplitude and phase characteristics. At this point in the course, I will be happy if you just
realize that phase delays happen, we can measure them, and that the phase of H(ω) identifies the
phase delay at frequency ω.
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Chapter 7

Interlude: Some practical examples

Here are a few concrete examples using the material learned so far.

7.1 MacRecorder

In 1985, your prof invented the MacRecorder, a digital microphone for Macintosh computers.
The Mac, and the Macintosh, had an unusual sampling rate of 22257 samples per second, (This
was tied to the video refresh rate of about 60.15 Hz, with effectively 370 lines per screen, where
6.15 ∗ 370 = 22257.)

What’s the highest frequency of sound that this device could record?
Answer: it is half the sampling rate, or 11128 Hz. In practice, it was more like 10kHz.
Later versions of the Macintosh played sounds at a sampling rate of 22050 samples per second.

(This was exactly half the sampling rate of CDs, which made it convenient to copy data from a CD
to a Mac, and back, although at lower quality of sound.)

At this new rate, how would a musical note recorded in the old rate sound?
Answer: because the sampling rate is lower, the musical note played out would sound lower (i.e.

it would sound flat.) More precisely, if we took the note “A above middle C” which is 440Hz, it
would play out at the frequency

freq = 440 ∗ 22050
22257

= 435.9Hz. (7.1)

This is about one percent lower in frequency, which you can definitely hear. To go down a semitone
(the next note on the scale, is to go down by about six percent. So this is quite a bit less than a
full semitone.

How do you get rid of the high frequencies before sampling, to avoid aliasing?
Answer: I used a simple RC filter, which is a single resister at the input, with a capacitor to

ground. It acts like the shocks on a car, reducing the high frequency oscillations while passing the
low frequency oscillations. The attentuation factor at frequency ω (in Hz) is given by

A =
1√

(2πRCω)2 + 1
. (7.2)

To attenuate by a factor of 1/2 at frequency ω = 10000, we need

(2πRCω)2 + 1 = 4 (7.3)
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or more simply

RC =
√

3
2π ∗ 10000

= 2.7× 10−5. (7.4)

A capacitor with C = .1µF (microfarads) and R = 270Ω (ohms) will do the trick.
This is not a perfect filter. A higher order filter that removes more of the higher frequencies,

while leaving the lower frequencies as is, can be designed using more electronic parts.

7.2 A 60Hz noise filter

Suppose you have seismic data sampled at 500 samples per second, which is contaminated with
60Hz noise, that was induced from a nearby power line. Design a simple filter to remove this noise.

Answer: Let’s design a simple filter with a zero at 60Hz to eliminate the noise. The 60Hz
frequency corresponds to the normalized frequency parameter ω0 = 60/500 = .12. The zero in the
complex plane, on the unit circle, is at Z0 = e−2πiω0 = e−.24πi. We can insert a zero at the negative
frequency as well, at Z0, in order to get a filter with real coefficients.

Our filter then has two zeros, Z0 and Z0, with Z-transform

H(Z) = (Z − Z0)(Z − Z0) = Z2 − (Z0 + Z0)Z + Z0Z0. (7.5)

Since Z0 is on the unit circle, we have Z0Z0 = 1, while the middle term is (Z0 +Z0) = 2 cos(.24π) =
1.4579. Thus the Z-transform can be written as

H(Z) = Z2 − 1.4579 ∗ Z + 1 (7.6)

and the corresponding FIR filter has three terms, given by

yn = xn − 1.4579 ∗ xn−1 + xn−2. (7.7)

Note: this is not a very good filter, which you can verify by plotting the frequency response.
But it does do the job of eliminating the 60Hz noise. Later in the course we will talk about making
better filters.



Chapter 8

Simple Filters

The systems we design (FIR, IIR) are specified by Z-transforms which are rational functions –
one polynomial divided by another. From the Fundamental Theorem of Algebra, we know these
polynomials can be factored as a product of terms of the form (Z − Z∗), where Z∗ is the root of
the polynomial. That is,

H(Z) =
Πj=1(Z − Zj)
Πk=1(Z − Zk)

. (8.1)

Many terms means we have a complicated system. The simplest filters, then, have a single factor
on top, a single factor on bottom, or one each above and below.

8.1 A single zero

An FIR filter with a single zero has a Z-transform of the form

H(Z) = c(Z − Z∗), (8.2)

where Z∗ is some fixed point on the complex plane. The frequency response is given as

H(ω) = c(e−2πiω − Z∗), (8.3)

and the amplitude and phase response are given by the amplitude and phase of H(ω).
Rather than computing these algebraically, let’s just look at a few examples.
For H(Z) = Z − 1, we have a zero at Z = 1, which corresponds to a zero at the frequency

ω = 0. For H(Z) = Z − i, we have a zero at Z = i, which corresponds to a zero at the frequency
ω = −0.25. We plot the amplitude response in Figure 8.1, and see a nice smooth function that
zeros out at the given frequency.

This would be a good filter for removing one specific frequency. Note we get a zero in the
amplitude response when the root Z∗ is on the unit circle in the complex plane.

If we move the zero off the complex plane, we don’t get a zero, but a small notch at the
corresponding frequency. Figure 8.2 compares the frequency response of the filter with H(Z) =
Z − 1, and the filter H(Z) = (2/3) ∗ (Z − 2). The first has a nice zero at ω = 0 whereas the second
has a notch at ω = 0, but not a full zero.

In general, if the zero is at Z∗ = ρe2πiω0 , then there will be a notch at frequency ω = −ω0, when
ρ 6= 1. The closer that ρ is to one, the closer the zero is to the unit circle, and so the notch gets
sharper and sharper. Until we get ρ = 1, and then the notch turns into a zero in the amplitude
response.
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Figure 8.1: Amplitude response for a filter with zero at Z = 1 (ω = 0) and at Z = i (ω = −.25)
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Figure 8.2: Amplitude response for a filter with zero at Z = 1 and at Z = 2

We should note that a filter with a zero at Z = 2 has the same amplitude response as one with
a zero at Z = 1/2. I could plot this, but you get exactly the same picture as the right side of
Figure 8.2. What is different is the phase response. Figure 8.3 shows the phase response for the
first, H(Z) = Z − 2, and for the second, H(Z) = 2Z − 1. Look how small the phase response is
for the first one. That’s why it is called minimum phase. Look how big the second one is. That is
why it is called maximum phase.

Notice the correspondence: Min phase has the zero outside the unit circle (i.e. Z = 2), while
Max phase has the zero inside the unit circle (Z = 1/2).
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Figure 8.3: Phase response for a filter with zero at Z = 2 (min phase), and at Z = 1/2 (max
phase).

You should check, algebraically, that the filter H(Z) = Z−Z∗ has the same amplitude response
as the filter H(Z) = Z∗Z − 1. But of course the phase response is different.
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8.2 A single pole

An FIR filter with a single ploe has a Z-transform of the form

H(Z) =
c

Z − Z∗
, (8.4)

where Z∗ is some fixed point on the complex plane. The frequency response is given as

H(ω) =
c

e−2πiω − Z∗
, (8.5)

and the amplitude and phase response are given by the amplitude and phase of H(ω).
Again, rather than computing these algebraically, let’s just look at a few examples.
For H(Z) = 1/(Z − 1), we have a pole at Z = 1, which corresponds to a big spike at the

frequency ω = 0. For H(Z) = i, we have a pole at Z = i, which corresponds to a spike at the
frequency ω = −0.25. We plot the amplitude response in Figure 8.4, and see a nice smooth function
that spikes at the given frequency.

This would be a good filter for amplifying one specific frequency. Note we get an infinite in the
amplitude response when the root Z∗ is on the unit circle in the complex plane.
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Figure 8.4: Amplitude response for a filter with pole at Z = 1 (ω = 0) and at Z = −i (ω = .25)

If we move the zero off the complex plane, we don’t get an infinite spike, but a smaller spike
at the corresponding frequency. Figure 8.5 compares the frequency response of the filter with
H(Z) = 1/(Z − 1), and the filter H(Z) = 1/(Z − 2). The first has a big spike at ω = 0 whereas
the second has a only a large hump at ω = 0, but not a full spike.

In general, if the pole is at Z∗ = ρe2πiω0 , then there will be a large hump at frequency ω = −ω0,
when ρ 6= 1. The closer that ρ is to one, the closer the pole is to the unit circle, and so the hump
gets sharper and sharper. Until we get ρ = 1, and then the hump turns into an infinite spike in the
amplitude response.

We should note that a filter with a pole at Z = 2 has the same amplitude response as one
with a pole at Z = 1/2. I could plot this, but you get exactly the same picture as the right side
of Figure 8.5. What is different is the phase response. Figure 8.6 shows the phase response for
the first, H(Z) = 1/(Z − 2), and for the second, H(Z) = 1/(2Z − 1). Look how small the phase
response is for the first one. That’s why it is called minimum phase. Look how big the second one
is. That is why it is called maximum phase.

Notice the correspondence: Min phase has the pole outside the unit circle (i.e. Z = 2), while
Max phase has the pole inside the unit circle (Z = 1/2).

As in the last section, the filter H(Z) = 1/(Z − Z∗) has the same amplitude response as the
filter H(Z) = 1/(Z∗Z − 1). But of course the phase response is different.
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Figure 8.5: Amplitude response for a filter with pole at Z = 1 and at Z = 2
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Figure 8.6: Phase response for a filter with pole at Z = 2 (min phase), and at Z = 1/2 (max
phase).

8.3 All-pass: matched zero/pole filters

By taking a filter of the form

H(Z) =
Z − Z∗
1− Z∗Z

(8.6)

you get a single zero at Z∗ and a single pole at 1/Z∗. For instance, you could put a pole at Z = 2i
and a zero at i/2, with a filter of the form

H(Z) =
2Z − i
Z − 2i

. (8.7)

By matching the pole and zero this way, we get a filter with a flat amplitude response. Such a
filter is called an all-pass filters, since it passes all frequencies with equal amplitude. Why would
we want this? In order to get a non-constant phase response, despite the flat amplitude response.

Figure 8.7 shows the amplitude and phase response for a filter with a zero at Z = 1/2 and a pole
at Z = 2. Note the amplitude response is completely flat. The phase response is doing something
interesting; the big change at ω = 0 corresponds to the location of the zero-pole pair being match
across the unit circle at Z = 1, where ω = 0.

8.4 Stability

Note again, a filter with poles inside the unit circle will be unstable.
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Figure 8.7: Amplitude and phase response for a filter with matched zero and pole pair.

We can see this easily in the single pole case, with

H(Z) =
a

Z − a
. (8.8)

This corresponds to a recursive (IIR) system of the form

yn = xn +
1
a
yn−1. (8.9)

The impulse response of this system is

(1,
1
a
,

1
a2
,

1
a3
,

1
a4
, . . .), (8.10)

which grows without bound if 1
|a| > 1. That is |a| < 1, so a single pole inside the unit circle gives

an unstable system.
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Chapter 9

Fourier transforms I

It turns out there are Fourier transforms defined in all sorts of situations. We start with the two we
need immediately: FT on sampled signals (sequences) and on periodic functions on the real line.

9.1 Defining the FT on sampled signals and on 1-periodic func-
tions

The Fourier transform of a sequence x = (. . . , x−1, x0, x1, . . .) is given by the formula

x̂(ω) =
∞∑

n=−∞
xne

−2πinω, ω ∈ R, (9.1)

where x̂(ω) is a 1-periodic function of the real parameter ω. We’ve seen this formula before, as the
frequency response of a LSI system with impulse response x. Now we give it its proper name, the
Fourier transform.

We can also define the Fourier transform of a 1-periodic function f(t) via the formula

f̂(n) =
∫ 1/2

−1/2
f(ω)e−2πint dt, n ∈ Z (9.2)

where f̂(n) is a function on the integers n ∈ Z.
What you should notice is that the FT of a sequence is a 1-periodic function on the real line,

and the FT of a 1-periodic function is a sequence. So you use the FT to go back and forth between
sequences and functions.

9.2 Examples of FTs, on sequences

Here are some simple examples.
1. Take the sequence x = δ0; that is, the sequence with x0 = 1, and all the other coefficients

are zero. Then
x̂(ω) =

∑
n

xne−2πinω = x0e
−2πi0ω = 1. (9.3)

That is, the Fourier transform of the delta function δ0 is the constant function 1.
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2. Take the sequence x = δ3; that is, the sequence with x3 = 1, and all the other coefficients
are zero. Then

x̂(ω) =
∑
n

xne−2πinω = x3e
−2πi3ω = e−6πiω. (9.4)

That is, the Fourier transform of the delta function δ3 is the complex exponential function ω 7→
e−6πiω, which has exactly 3 cycles in the interval [0, 1].

3. Take the sequence x = δ−3 + δ3; that is, the sequence with x−3 = 1, x3 = 1, and all the
other coefficients are zero. Then

x̂(ω) = e2πi3ω + e−2πi3ω = 2 cos 6πω. (9.5)

That is, the Fourier transform of the sum of these two delta functions is a cosine, ω 7→ 2 cos 6πω,
which has exactly 3 cycles in the interval [0, 1].

4. Take the sequence x = δ−3 − δ3; that is, the sequence with x−3 = 1, x3 = −1, and all the
other coefficients are zero. Then

x̂(ω) = e2πi3ω − e−2πi3ω = 2i sin 6πω. (9.6)

That is, the Fourier transform of the difference of these two delta functions is a sine, ω 7→ 2i sin 6πω,
which has exactly 3 cycles in the interval [0, 1].

5. Take the sequence x which is one for all xn in the range −N ≤ n ≤ N . Then

x̂(ω) =
N∑

n=−N
e2πinω =

e−2πiNω − e2πi(N+1)ω

1− e2πiω
=

sin(π(2N + 1)ω)
sin(πω)

. (9.7)

That is, this Fourier transform is a ratio of two sines. It is interesting enough that we should plot
it, in Figure 9.1.
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Figure 9.1: The Fourier transform of a long stretch of ones. (N = 10)
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9.3 Examples of FTs, on 1-periodic functions

1. Take f(ω) = 1 the constant one function. The FT is the sequence with

f̂(n) =
∫ 1/2

−1/2
f(t)e−2πint dt =

∫ 1/2

−1/2
e−2πint dt = 0, for n 6= 0, (9.8)

and is 1 when n = 0. Thus f̂ = δ0, the delta function supported at zero.
2. Take f(ω) = e2πi3ω the complex exponential with 3 cycles in the unit interval. The FT is

the sequence with

f̂(n) =
∫ 1/2

−1/2
f(t)e−2πint dt =

∫ 1/2

−1/2
e2πi(3−n)t dt = 0, for n 6= 3, (9.9)

and is 1 when n = 3. Thus f̂ = δ3, the delta function supported at three.
3. Take f(ω) = 2 cos 6πω = e2πi3ω + e−2πi3ω the cosine with 3 cycles in the unit interval. The

FT is the sequence with

f̂(n) =
∫ 1/2

−1/2
f(t)e−2πint dt =

∫ 1/2

−1/2
e2πi(3−n)t + e2πi(3+n)t dt = 0, for n 6= 3,−3, (9.10)

and is 1 when n = 3 or −3. Thus f̂ = δ−3 + δ3, the sum of two delta functions.
4. Take f(ω) = 2i sin 6πω = e2πi3ω− e−2πi3ω the sine with 3 cycles in the unit interval. The FT

is the sequence with

f̂(n) =
∫ 1/2

−1/2
f(t)e−2πint dt =

∫ 1/2

−1/2
e2πi(3−n)t − e2πi(3+n)t dt = 0, for n 6= 3,−3, (9.11)

and is 1 when n = 3, and is −1 when n = −3. Thus f̂ = δ3 − δ−3, the difference of two delta
functions. You might notice this is almost like the difference of delta functions in example 4 of the
last section, except the difference is reversed.

5. Take f(ω) = 1 on the interval [−a, a] and zero elsewhere. (This is known as a boxcar, or a
step function.) The FT is the sequence

f̂(n) =
∫ 1/2

−1/2
f(t)e−2πint dt =

∫ a

−a
f(t)e−2πint dt =

e2πina − e−2πina

2πin
=

sin 2πna
πn

. (9.12)

This is also worth plotting. It is the set of uniform samples from the sinc function, as seen in
Figure 9.2.

9.4 Properties of the Fourier transform

Here are some important properties of the Fourier transform on sequences:

1. ̂̂x(n) = x(−n).

2. The FT has an inverse, given by a similar formula.

3. x̂ ∗ y = x̂ · ŷ.
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Figure 9.2: The Fourier transform of a boxcar, supported on interval [−1/3, 1/3]. The FT is a time
series sequence, that is a set of uniform samples of the sinc function.

4. x̂ · y = x̂ ∗ ŷ.

5. ||x||2 = ||x̂||2.

6. 〈x,y〉 = 〈x̂, ŷ〉.

In words, we can summarize as the following:

1. Repeating the FT twice returns the original signal, but in reverse order.

2. The inverse FT is computed using a sum/integral with exponentials, but with a + in the
exponential argument.

3. The FT maps a convolution to a product.

4. The FT maps a product to a convolution.

5. The FT preserves energy (or length).

6. The FT preserves inner products.

9.5 Some worked examples

1. Let x = (0, 1, 2, 3), that is, the sequence with x1 = 1, x2 = 2, x3 = 3, and all other coefficients
zero. Then we compute the first Fourier transform

x̂(ω) =
∑
n

xne
−2πinω = e−2πiω + 2e−4πiω + 3e−6πiω, (9.13)
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which is a 1-periodic function, and then compute the second Fourier transform as

̂̂x(n) =
∫ 1/2

−1/2
x̂(ω)e−2πinω dω (9.14)

=
∫ 1/2

−1/2

(
e−2πiω + 2e−4πiω + 3e−6πiω

)
e−2πinω dω (9.15)

=
∫ 1/2

−1/2

(
e−2πi(1+n)ω + 2e−2πi(2+n)ω + 3e−2πi(3+n)ω

)
dω, (9.16)

which gives a non-zero result only when one of the factors n + 1, n + 2, n + 3 is zero. Thus we
find that ̂̂x(−1) = 1, ̂̂x(−2) = 2, ̂̂x(−3) = 3, which is exactly the reverse of the coefficients in the
original sequence x. This example verifies property 1.

2.We can fix the problem of reverse coefficients in the last example by defined the inverse Fourier
transform using a + in the exponential. For instance, we define the inverse Fourier transform of a
1-periodic function f(ω) as

f̌(n) =
∫ 1/2

−1/2
f(ω)e+2πinω dω, (9.17)

where we see in the exponential we have a plus sign rather than a negative sign. This way, when
we apply the inverse transform to the function x̂ of the last example, we have

ˇ̂x(n) =
∫ 1/2

−1/2
x̂(ω)e2πinω dω (9.18)

=
∫ 1/2

−1/2

(
e−2πiω + 2e−4πiω + 3e−6πiω

)
e2πinω dω (9.19)

=
∫ 1/2

−1/2

(
e−2πi(1−n)ω + 2e−2πi(2−n)ω + 3e−2πi(3−n)ω

)
dω, (9.20)

which is zero except when one of the factors 1− n, 2 − n, 3 − n is zero. Thus we find that ˇ̂x(1) =
1 = x1, ˇ̂x(2) = 2 = x2, ˇ̂x(3) = 3 = x3. In other works, ˇ̂x = x, so we have recovered the original
signal. This example verifies property 2.

3. Let’s do a simple convolution example. Take x = (1, 2),y = (1, 3) and so we easily compute
the convolution x ∗ y = (1, 5, 6). The Fourier transforms are

x̂(ω) = 1 + 2e−2πiω (9.21)
ŷ(ω) = 1 + 3e−2πiω (9.22)

x̂ ∗ y(ω) = 1 + 5e−2πiω + 6e−4πiω (9.23)

and it is easy to verify that the product of the first two functions equals the third, as

(1 + 2e−2πiω)(1 + 3e−2πiω) = 1 + 5e−2πiω + 6e−4πiω. (9.24)

This example verifies property 3.
This is not surprising, since we’ve already seen that the Z-transform of a convolution gives the

product of Z-transforms; we just included the substitution Z = e−2πiω.
4. Let’s repeat the above example, using a pointwise product of sequences. Take x = (1, 2),y =

(1, 3) and the pointwise product is x · y = (1, 6). The Fourier transforms are

x̂(ω) = 1 + 2e−2πiω (9.25)
ŷ(ω) = 1 + 3e−2πiω (9.26)

x̂ · y(ω) = 1 + 6e−2πiω. (9.27)
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The convolution for 1-periodic functions is defined in the obvious way, so

(x̂ ∗ ŷ)(ω) =
∫

x̂(ω − s)ŷ(s) ds (9.28)

=
∫ (

1 + 2e−2πi(ω−s)
) (

1 + 3e−2πis
)
ds (9.29)

=
∫

1 + 2e−2πiωe2πis + 3e−2πis + 6e−2πiω ds (9.30)

= 1 + 0 + 0 + 6e−2πiω (9.31)
= x̂ · y(ω), (9.32)

where we see in the last integral that the terms with an exponential depending on s just integrate
to zero, and the other ones give the part depending on ω only. So we have that the FT of the
pointwise product is the convolution of the two FTs. This verifies property 4.

5. Let’s take the vector x = (2, 3, 6), which has length ||x|| =
√

22 + 32 + 62 =
√

49 = 7. The
Fourier transform of this signal is the 1-periodic function

x̂ = 2 + 3e−2πiω + 6e−4πiω. (9.33)

To get the “length” of this function, we start by computing its energy, which is the integral of the
square of the function, so

Energy =
∫
|x̂(ω)|2 dω =

∫
x̂(ω)x̂(ω) dω (9.34)

=
∫ (

2 + 3e−2πiω + 6e−4πiω
) (

2 + 3e2πiω + 6e4πiω
)
dω (9.35)

=
∫

4 + 9 + 36 + cross terms involving e2πinω dω (9.36)

= 49, (9.37)

where the cross terms all integrate to zero, since we know those complex exponentials all integrate
to zero. So the energy is 49, and the square root is the “length” of the function, which is 7. So
it matches the length of the initial vectors x = (2, 3, 6). This verifies property 5, that the FT
preserves length.

6. Let’s take vectors x = (2, 3, 6) and y = (3, 2, 1), with Fourier transforms

x̂(ω) = 2 + 3e−2πiω + 6e−4πiω (9.38)
ŷ(ω) = 3 + 2e−2πiω + 1e−4πiω. (9.39)

The inner product (dot product) of the two vectors is just 〈x,y〉 = 2 ∗ 3 + 3 ∗ 2 + 6 ∗ 1 = 18, while
the inner product of the two functions is

〈x̂, ŷ〉 =
∫

x̂(ω)ŷ(ω) dω (9.40)

=
∫ (

2 + 3e−2πiω + 6e−4πiω
) (

3 + 2e2πiω + 1e4πiω
)
dω (9.41)

=
∫

6 + 6 + 6 + cross terms involving e2πinω dω (9.42)

= 18, (9.43)

since the cross terms all integrate to zero. So this inner product is 18, which matches the inner
product of the two vectors. This example verifies property 6, that the FT preserves inner products.
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9.6 Convolution, etc, on 1-periodic functions

In the examples in the last section, we stumbled across some operations on 1-periodic functions
which have not been defined yet. So we define them here.

Convolution of two functions f(ω) and g(ω) is defined as the integral

(f ∗ g)(ω) =
∫ 1/2

−1/2
f(ω − s)g(s) ds. (9.44)

Note the similarity to our definition of convolution of vectors,

(x ∗ y)n =
∑
k

xn−kyk. (9.45)

The key difference is that the sum is replaced by an integral, and rather than summing over variable
k, we integrate over variable s.

Because f, g are 1-periodic, the result of the convolution is also a 1-periodic function. It is
interesting to note that the interval [−1/2, 1/2] can be replaced with any interval of length one,
and the result is the same. For instance, in many books, you will see the defining integral on the
interval [0, 1]. This gives exactly the same result. It is also worth noting that f ∗ g = g ∗ f , so the
defining integral can also be written as

(f ∗ g)(ω) =
∫ 1/2

−1/2
f(s)g(ω − s) ds. (9.46)

The inner product of two functions f(ω) and g(ω) is defined as the integral

〈f, g〉 =
∫ 1/2

−1/2
f(ω)g(ω) dω. (9.47)

Note the complex conjugate indicated on the function g; this makes the inner product anti-linear
in the second component, and linear in the first component. It is analogous to the inner product
of vectors, given by

〈x,y〉 =
∑
n

xnyn. (9.48)

Remember, the inner product of two vectors is a number which measures the angle between the
two vectors. Of course, here we are measuring angles in an infinite dimensional space, which you
may find hard to visualize.

The energy of a function is defined using the inner product, and hence is also given by an
integral. We define it as

Energy = 〈f, f〉 =
∫ 1/2

−1/2
|f(ω)|2 dω. (9.49)

The “length” or L2 norm of the function is defined as the square root of the energy, so

||f || =
√
〈f, f〉 =

√∫ 1/2

−1/2
|f(ω)|2 dω. (9.50)

Again, notice that the norm of a function is a number (not a function), and roughly speaking it is
a measure of how far away from zero is the function.
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9.7 Verifying the six properties

The above examples show that it is plausible that the six properties of the FT, as listed in Sec-
tion 9.4, hold. We really should show this in general. However, let’s not go crazy! We’ve just verify
a few.

Property 1 says if we repeat the FT twice, we get the same signal back, reversed. To check,
start with signal x. It’s FT is

x̂(ω) =
∑
n

xne
−2πinω. (9.51)

Taking the FT a second time, we get an integral form

̂̂x(m) =
∫

x̂(ω)e−2πimω dω (9.52)

=
∫ ∑

n

xne
−2πinωe−2πimω dω, now reverse order of int, sum (9.53)

=
∑
n

xn

∫
e−2πi(n+m)ω dω (9.54)

and we notice the integral is always zero, except when n+m = 0, in which case we get a one. So
the sum drops out to a single nonzero term, at n = −m, and we have

̂̂x(m) = x−m, (9.55)

which is exactly what property 1 says. That is, we recover the original signal, but time-reversed.
Property 3 says if we that the FT of a convolution, we get the product of two FTs. Let’s check,

using sequences x,y and z = x ∗ y. Then the FT of the convolution is

ẑ(ω) =
∑
n

zne
−2πinω (9.56)

=
∑
n

(
∑
k

xn−kyk)e−2πinω, then split up the exponential (9.57)

=
∑
n,k

xn−ke
−2πi(n−k)ωyke

−2πikω, then change variables on the sums (9.58)

=
∑
n′,k

xn′e
−2πi(n′)ωyke

−2πikω, (9.59)

= x̂(ω)ŷ(ω), (9.60)

which is the product of the two FTs, as desired.
Property 4 says the FT of a pointwise product gives the convolution of two FTs. Again we

check, using x,y and z = x · y. Then the FT of the product is

ẑ(ω) =
∑
n

zne
−2πinω (9.61)

=
∑
n

xnyne
−2πinω, then express xn using the inverse FT (9.62)

=
∑
n

(∫
x̂(t)e2πint dt

)
yne
−2πinω, then switch the sum, int (9.63)
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=
∫

x̂(t)
∑
n

yne
−2πin(ω−t), (9.64)

=
∫

x̂(t)ŷ(ω − t), (9.65)

which is the convolution of the two FTs as 1-periodic functions, which is as desired.
Property 6 says that the FT preserves inner products. Again to check, we use two sequences x

and y. Then the inner product of their FTs is given by

〈x̂, ŷ〉 =
∫

x̂(ω)ŷ(ω) dω (9.66)

=
∫ ∑

n

xne
−2πinω

∑
m

yme−2πimω dω, (9.67)

=
∫ ∑

m,n

xnyme
−2πinωe−2πimω dω, then take the sums out (9.68)

=
∑
m,n

xnym

∫
e−2πi(n−m)ω dω (9.69)

and we notice this integral is zero, except when n = m, in which case we get a one. So the double
sum drops down to a single sum (with n = m) and we have

〈x̂, ŷ〉 =
∑
n

xnyn (9.70)

= 〈x,y〉, (9.71)

which is the inner product of the two sequences.
Property 5 follows immediately from property 6, since the length (or norms) are defined using

the inner product.

9.8 What does the FT mean?

The Fourier transform of a signal x tells you the frequency content of that signal. That is, we can
think of the signal x as being made up of a sum of sines and cosines at various frequencies. By
taking the Fourier transform, we can tell what frequencies are present, and at what amplitude.

Specifically, if value of x̂(ω) is large at some frequency ω = ω0, then the signal x has some sine
or cosine at that frequency. For instance, in Figure 9.3, we have a short signal that is the sum
of two sine waves, f(t) = sin(2π10t) + .3 ∗ sin(2π50t), sampled at 500 samples per second. The
second half of the figure shows the Fourier transform. The peak at ω = .02 indicates the presence
of the sine wave with frequency 10Hz = .02 ∗ 500, and amplitude 1. The peak at ω = .1 indicates
the presence of the sine wave with frequency 50Hz = .1 ∗ 500 and amplitude .3. The peaks at
the negative frequencies are just a symmetry property of the FT. Or, you can think of the sine
waves as being the sum of two exponentials each, one with a positive frequency, one with a negative
frequency.

A more typical signal is shown in Figure 9.4, top, which is a little spike that might be generated
by a hammer blow to a metal rod, or another impulsive source. A “boom.” Its Fourier transform
is shown in the bottom of the figure, it indicates that this signal has quite a bit of low frequency
energy, and not so much high frequency content.
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Figure 9.3: Plot of signal made up of sine waves, and the FT showing the frequency content.

What is very interesting about the FT is that we can recover the signal from the frequency
content alone. In fact, Figure 9.4 was created by choosing a shape for the Fourier transform (the
lower part of the diagram), and the applying the inverse Fourier transform to get the corresponding
signal.

9.9 How do we apply the FT?

The FT converts convolutions to pointwise multiplication. Multiplication is much faster than
convolution, so we can implement convolution much faster by working in the frequency domain.

As an example, suppose we have a random signal that we want to smooth out. Essentially, this
means we have to remove the high frequencies. To do this, we the the FT of the signal, set the
amplitudes of the high frequencies to zero, and then convert back to signal domain. We demonstrate
this step by step in Figure 9.5. In the first frame, we see a noisy signal. The second frame shows the
Fourier transform, which shows the noise spread across many frequencies. The third frame shows
the Fourier transform, with the high frequencies components set to zero. The fourth frame shows
the resulting signal, obtained by inverting the the partially zeroed Fourier transform.

More generally, we can decide to modify the frequency content by mutliplying the FT of the
signal with some fixed function g(ω). With this technique, we can apply very sophisticated filters
to the signal.
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Figure 9.4: Plot of spiky signal, and the FT showing the frequency content.
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Figure 9.5: Smoothing out a noisy signal by zeroing out the high frequencies.
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Chapter 10

Fourier transforms II

The Fourier transform of a function f(t) defined on the real line is given by

f̂(ω) =
∫ ∞
−∞

f(t)e−2πiωt dt, ω ∈ R, (10.1)

which gives f̂(ω) as a function on the real line. The inverse Fourier transform is defined as

f̌(ω) =
∫ ∞
−∞

f(t)e+2πiωt dt, ω ∈ R, (10.2)

which is also a function on the real line.
For a wide class of functions, it is true that ˇ̂

f = f ; that is, applying the FT followed by the
inverse FT gives you back the original function.

We can also define the convolution of two functions on the real line, as

(f ∗ g)(t) =
∫ ∞
−∞

f(t− s)g(s) ds. (10.3)

The inner product of two such functions is defined as

〈f, g〉 =
∫ ∞
−∞

f(t)g(t) dt. (10.4)

The energy of a signal is defined as

Energy = 〈f, f〉 =
∫ ∞
−∞
|f(t)|2 dt, (10.5)

and the length, or L2 norm is defined as the square root of the energy, so

||f || =
√
〈f, f〉. (10.6)

With these definitions, the six properties of FT again hold:

1. ̂̂f(t) = f(−t).

2. The FT has an inverse, given by a similar formula.

3. f̂ ∗ g = f̂ · ĝ.

73
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4. f̂ · g = f̂ ∗ ĝ.

5. ||f || = ||f̂ ||.

6. 〈f, g〉 = 〈f̂ , ĝ〉.

The proofs of these properties are very similar to those for the FT on sequences and 1-periodic
function. Try them!

You should also try computing the FT of some simple functions. A good one to try is the
Gaussian,

f(t) = e−t
2
. (10.7)

Another one to try is the boxcar function, where f(t) = 1 on some interval [−a, a] and zero
elsewhere. You might look back at the earlier example we did on the 1-periodic boxcar.

To tell you the truth, though, while the Fourier transform on the real line is very useful in
theory, in practice we never can compute the FT of a signal on the real line, since we can never
measure the real signal f(t) for all times t. So we are left with using the discrete Fourier transform,
discussed in the next chapter.
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Fourier transforms III

The discrete Fourier transform is the practical workhorse for all our signal processing needs. It is
a special case of the Fourier transform applied to sequences.

Recall that the Fourier transform of a sequence x = (. . . , x−1, x0, x1, . . .) is defined as the
function

x̂(ω) =
∞∑

n=−∞
xne

−2πinω, for all real ω , (11.1)

which is a 1-periodic function on the real line. When the signal is a finite sequence (which often
happens in practice), of the form x = (x0, x1, . . . , xN−1), then the Fourier transform reduces to a
finite sum

x̂(ω) =
N−1∑
n=0

xne
−2πinω, for all real ω , (11.2)

which again is a 1-periodic function on the real line. Now, it turns out that if we sample this
function at N uniformly spaced points in the interval, ω = k/N, k = 0, 1, . . . , N − 1, we obtain an
invertible linear transform from vectors of length N to vectors of length N . That is, we define

x̂k = x̂(
k

N
) =

N−1∑
n=0

xne
−2πink/N , 0 ≤ k ≤ N − 1, (11.3)

as the linear map which takes the sequence x = (x0, x1, . . . , xN−1) to the new sequence

x̂ = (x̂0, x̂1, x̂2, . . . , x̂N−1). (11.4)

It is convenient to write the Fourier transform in the form

x̂k =
N−1∑
n=0

xnu
−nk, 0 ≤ k ≤ N − 1, (11.5)

where u = e2πi/N is the first N-th root of unity.

11.1 The discrete FT as a matrix

As a simple example, set N = 4, and we have the formula

x̂k =
3∑

n=0

xne
−2πink/4, 0 ≤ k ≤ 3, (11.6)
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where of course e−2πink/4 = (eπi/2)−nk = (i)nk. So we can rewrite the transform in matrix form, as
x̂0

x̂1

x̂2

x̂3

 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i



x0

x1

x2

x3

 (11.7)

In general, the n-th order discrete FT can be expressed as a matrix, where the entries are complex
numbers of the form u−nk, with u = e2πi/N the first N-th root of unity. As in the 4x4 example, we
can write the transform in matrix form as

x̂0

x̂1

x̂2
...
x̂N−1

 =
[
. . . u−kn . . .

]

x0

x1

x2
...
xN−1

 , (11.8)

where we use the u−kn to indicate the matrix entries in the NxN transform.
So, a quick way to think of the discrete FT is that it is just a special matrix transform on

vectors.

11.2 What does the DFT mean?

Recall the DFT is just a special case of the FT applied to sequences, so it simply gives a frequency
representation of a signal. We should be careful about noting what the indicies mean, however.

For instance, if the particular coefficient x̂k is large, this means there is a sinusoid present with
normalized frequency ω = k/N . And the normalized frequency is means something relative to the
sample rate.

As a concrete example, suppose you have a signal f(t) which is sampled at 500 samples per
second, and you collect 256 samples into a finite vector x = (x0, x1, . . . , x255). You take the discrete
Fourier transform to obtain vector x̂ = (x̂0, x̂1, . . . , x̂255). Now, suppose x̂10 is large: what frequency
is present in the signal?

Well, the normalized frequency is 10/256 = .04, and converting to Hertz from the sampling
rate, the frequency present is F = .04 ∗ 500 = 20Hz. So there is a 20Hz sinusoid somewhere in
your signal.

Be careful about frequency wrap around. For instance, if x̂200 is large, this corresponds to
a normalized frequency of ω = 200/256 = .78, but we should map this to a frequency in the
range [−1/2, 1/2]. Thus we use ω′ = .78 − 1 = −.22 and the corresponding real frequency is
−.22 ∗ 500 = −110Hz. (And in practice, we ignore the negative.)

11.3 The six FT properties, for the discrete FT

Here are some important properties of the Discrete Fourier transform, that we want on sequences
of length N:

1. ̂̂xn = x−n.

2. The FT has an inverse, given by a similar formula.
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3. x̂ ∗ y = x̂ · ŷ.

4. x̂ · y = x̂ ∗ ŷ.

5. ||x|| = ||x̂||.

6. 〈x,y〉 = 〈x̂, ŷ〉.

Unfortunately, this does not quite work with the way we defined the discrete Fourier transform
above. First, in property 1, we have to define indices modulo N . Second, it turns out in many of
the formulas we are often off by a factor of

√
N or even N . We also need to use circular convolution,

which we will define in a section below. Here are the actual properties that work. (We use ⊗ to
indicate circular convolution.)

1. ̂̂x0 = Nx0, and ̂̂xn = NxN−n for n > 0.

2. The FT has an inverse, x̌k = 1
N

∑N−1
n=0 xnu

+nk, 0 ≤ k ≤ N − 1,

3. x̂⊗ y = x̂ · ŷ.

4. N x̂ · y = x̂⊗ ŷ.

5.
√
N ||x|| = ||x̂||.

6. N〈x,y〉 = 〈x̂, ŷ〉.

Maybe the following example explains property 1 better. Repeating the FT twice on the vector
[1, 2, 3, 4], we get

FT (FT ([1, 2, 3, 4])) = 4 · [1, 4, 3, 2] = [4, 16, 12, 8]. (11.9)

That is, the first entry stays where it belongs, and the other guys get reversed. And then they all
get multiplied by 4.

11.3.1 The normalized DFT

To get rid of some of those annoying factors of N and
√
N , it is common to define a normalized

DFT as

x̂k =
1√
N

N−1∑
n=0

xnu
−nk, 0 ≤ k ≤ N − 1, (11.10)

and the normalized inverse transform as

x̌k =
1√
N

N−1∑
n=0

xnu
+nk, 0 ≤ k ≤ N − 1, (11.11)

again with u = e2πi/N . Then, the six properties work out like this:

1. ̂̂x0 = x0, and ̂̂xn = xN−n for n > 0.

2. The FT has an inverse, x̌k = 1√
N

∑N−1
n=0 xnu

+nk, 0 ≤ k ≤ N − 1,

3. x̂⊗ y =
√
N x̂ · ŷ.
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4.
√
N x̂ · y = x̂⊗ ŷ.

5. ‖|x|| = ||x̂||.

6. 〈x,y〉 = 〈x̂, ŷ〉.

Note that now the annoying factor
√
N only appears in properties 4 and 5.

Because this normalized transform preserves the inner product, it is called a unitary operator.
The matrix of the operator have the property that its inverse is the same as its conjugate transpose:

A−1 = A∗. (11.12)

This would be interesting to you if you like linear algebra.
Here’s a little calculation to see we get the inverse property: Write matrices A,B with entries

Ajk =
1√
N
u−jk, Bjk =

1√
N
u+jk. (11.13)

Here, A is the matrix of the DFT and B is its conjugate transpose. Then the product of the two
matrices has entries

(AB)jk =
∑
n

AjnBnk =
1
N

∑
n

u−jnu+nk =
1
N

∑
n

u+n(k−j) (11.14)

and as we saw in the appendix, these powers of roots of unity sum up to zero, except in the case
when the power k − j is zero. Thus the matrix AB has zeros everywhere except on the diagonal
(k = j), where we get the value 1 =

∑
n = 0N−11. So AB is the identity matrix, and thus B is

the inverse matrix of A. That is, B is the inverse Fourier transform.

11.4 MATLAB quirks

MATLAB normalizes its DFT and the inverse in a unique way, which you should be aware of. The
FT is given by

x̂k =
N−1∑
j=0

xju
−jk (11.15)

and the inverse FT is given by

x̌k =
1
N

N−1∑
j=0

xju
+jk, (11.16)

where u is the N-th root of unity, u = e2πi/N .
So rather than sharing a normalization factor of

√
N for both the forward and inverse transform,

MATLAB puts nothing on the forward transform, and the whole N on the inverse.
Also, MATLAB indexes its vectors from 1 to N, rather than from 0 to N − 1. So you have to

keep track of that shift by one when thinking about frequencies and so forth.
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11.5 Circular convolution

Circular convolution is a little different than the convolution we learnt for sequences. But not a lot
different.

The main point is that when you convolve two finite sequences, the beginnings and the end
need to wrap around, in order to obtain the FT property that convolutions map to products.

The circular convolution is defined by the same formula as we have for infinite sequences,

zn =
N−1∑
k=0

xn−kyk, (11.17)

except when the index n− k becomes negative, we replace it with N + n− k ≥ 0.
Here is an example. Take sequences of length 4, (x0, x1, x2, x3) and (y0, y1, y2, y3). Then we

have the result z = x⊗ y in circular convolution as

z0 = x0y0 + x3y1 + x2y2 + x1y3, (11.18)
z1 = x1y0 + x0y1 + x3y2 + x2y3, (11.19)
z2 = x2y0 + x1y1 + x0y2 + x3y3, (11.20)
z3 = x3y0 + x2y1 + x1y2 + x0y3. (11.21)

Weird, but that’s the way it is.
For you math gurus, the indices are simply computed modulo N. Another way to see these

sums is as follows: for z2, it is computed as the sum of all terms xjyk where either j + k = 2 or
j + k = 2 +N . And similar for other zn. Check out the last example to see this.

Or mentally think of the sequences as lying in two loops: line up the terms in the loop, multiply
pointwise, and sum. Shift the loops relative to each other, to get the different zn.

We now can check that the DFT of a circular convolution gives the product of the two DFTs.
(That is what property 3 in our list.)

Given two vectors x,y of length N , we write the circular convolution as

(x⊗ y)n =
N−1∑
n=0

xn−kyk, (11.22)

where we understand the convention that xn−k has index n − k computed modulo N . That is,
when index n− k becomes negative, we replace it with N + n− k ≥ 0.

Now, (
x̂⊗ y

)
m

=
∑
n

(x⊗ y)n u
−mn (11.23)

=
∑
n

(∑
k

xn−kyk

)
u−mn (11.24)

=
∑
n,k

xn−ku−m(n−k)yku−mk, change variables, j = n− k (11.25)

=
∑
j,k

xju−mjyku−mk (11.26)

=

∑
j

xju−mj

(∑
k

yku−mk
)

(11.27)

= x̂mŷm. (11.28)
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Thus, we have that the DFT of the convolution x ⊗ y is the product of the two DFTs, x̂ and ŷ.
This verifies property 3.

11.6 Zero padding

This circular convolution is kind of a pain. We are forced to use it, because of the way the DFT
works on products. But it causes this strange “wrap around” effect, where the signal near the
beginning n = 0 starts to interfere with the signal near the end n = N . This leads to artifacts in
your signal processing algorithms.

One way to avoid this is with zero padding. We tack on some zeros to the end of our vectors,
and then a circular convolution behaves like the regular convolution for infinite sequences.

For example, let’s let

x = (x0, x1, x2, x3, 0, 0, 0, 0) and y = (y0, y1, y2, y3, 0, 0, 0, 0). (11.29)

That is, we take two vectors of length four, and tack on four zeros to each, to get vectors of length
eight. We can compute the circular convolution

z = x⊗ y = (x0y0, x1y0 + x0y1, x2y0 + x1y1 + x0y2, . . . , x3y2 + x2y3, x3y3, 0), (11.30)

which agrees exactly with the regular convolution x ∗ y. So by tacking on the zeros, we avoid the
wrap around problem. (Technically, we have zeros wrapping around, but they don’t add up to
anything.)

Note each time you convolve, you will have to tack on more zeros. For some applications, this
can be prohibitive, so you just deal with the annoyance of wrap around.

11.7 The Fast Fourier Transform

The DFT is a linear operator, and as such, to compute the DFT of an N-vector should take about
N2 arithmetic operations. When N is large, like a million, the cost of computing N2 multiplications
and additions is ridiculous (a million squared is a trillion operations).

There is an algorithm, called the fast fourier transform, that reduces this to about N log2N
operations. For N equal a million, this is only twenty million operations, which is a huge savings.
That is, twenty million is much smaller than a trillion.

The algorithm was invented by Cooley and Tukey in the 1960s, and is based on the observation
that we can rewrite the basic transform equation

x̂j =
∑
k

xku−jk (11.31)

as a sum over the even and odd indices k, so with

x̂j =
∑

k even
xku−jk +

∑
k odd

xku−jk (11.32)

=
N/2−1∑
r=0

x2ru
−2rj +

N/2−1∑
r=0

x2r+1u
−j(2r + 1) (11.33)

=
∑
r

x2r(u2)−rj + u−j
∑
r

x2r+1(u2)−jr (11.34)
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we see the order N DFT can be computed as the sum of 2 order N/2 DFTs. Now this is a speed
up of the algorithm since both of the N/2 DFTs take (N/2)2 operations each, for a total of N2/2.
That is, a speed up by a factor of 2.

You can repeat this operation on the order N/2 DFT, writing each of them as a sum of two
order N/4 DFTs. Now, if N started out as a power of two, you can repeat this over and over again,
getting each DFT computed as the sum of two smaller operations.

A careful count of operations shows that this divide and conquer algorithm reduces the opera-
tions count for order N2 to order N log2N .

Now, in principle, you will never have to write FFT code yourself. Some jerk somewhere else
has written code that is way better than what one of us mere mortals could do. (Although I had to
do this back in the 80’s.) In fact, there is a web page out there somewhere, where you can make a
request for code sample of the FFT, in just about any computer language, and it will automatically
generate highly optimized code for whatever special purpose you need it for. The stuff has been
highly studied, and there is great code out there to do the FFT for you.

MATLAB has very good FFT code in it.
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Chapter 12

General Fourier transforms

It turns out that the Fourier transform is a rather general notion that converts a function on one
space into a function on another space. For different spaces, there are different transforms, but
they all look fairly similar – involving a sum or integral, and some complex exponentials.

The spaces involved are called locally compact abelian groups. They include all the Euclidean
spaces Rn, multi-integers ZN , tori Tn, finite cyclic groups Z/N , as well as product of these things,
and some more exotic examples. We won’t have much chance to look at these general Fourier
transforms, but let me assure you, they are very interesting. The six properties all hold in these
general situations.

In physics, and geophysics, the Fourier transform on the plane R2, on space R3 and space-time
R4 are all important. In signal processing, we are often interested in the integer spaces Z2 and Z3,
as well as products of the finite spaces Z/N .

Just so you can say you’ve seen it, the 2D Fourier transform of a function f(x, y) on the real
plane R2 is given by

f̂(ξ, η) =
∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−2πi(ξx+ηy) dx dy, for all ξ, η ∈ R. (12.1)

Notice the resulting function is also a function on the plane, but in the dual variables ξ, η. The
3D transform is similar, except now you get a function of three variables, a triple integral, and the
exponential function includes a factor ξx+ηy+ζz. The inverse transform simply replaces the −2πi
with +2πi.

The Fourier transform of a 2D sequence xmn is defined by the sum

x̂(ξ, η) =
∞∑

m=−∞

∞∑
n=−∞

e−2πi(ξm+ηn) (12.2)

which is a 1-periodic function in both variables ξ, η. This transform is very useful for processing
digital images, where the 2D sequence xmn represents intensity values for pixels in a picture. The
inverse transform involves a double integral over the square [0, 1]× [0, 1].
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Chapter 13

Symmetries of the Fourier transform

You should know this symmetry. When the signal x is a real sequence, the Fourier transform x̂ is
a Hermetian function. That is, x̂(−ω) = x̂(ω). That is, when we replace the argument ω with the
negative, the function gives its complex conjugate.

Because of this, we have a symmetry in the amplitude, |x̂(−ω)| = |x̂(ω)|.
You will see this symmetry all the time when you plot the amplitude of the FT of a real signal,

where the peaks at positive frequencies match peaks at the negative frequencies.
As a simple example, take a signal the is the sum of two sine waves, at two different frequencies,

two different amplitudes. In Figure 13.1, we see the plot of the signal, f(t) = sin(2π10t) + .3 ∗
sin(2π50t) and its corresponding Fourier transform. The peaks at ω = .02 and ω = .1 are matched
by identical peaks in the negative frequencies. We always see symmetry like this for a real signal.
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Figure 13.1: A real signal made up of sine waves, and the FT showing symmetry in frequency
content.

Mathematically, we see this symmetry for a real signal because, when we take a complex con-
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jugate of the Fourier transform, and apply it to the defining sum, we have

x̂(ω) =
∑

xne−2πinω (13.1)

=
∑

xne−2πinω (13.2)

=
∑

xne
+2πinω since xn is real (13.3)

=
∑

xne
−2πin(−ω) (13.4)

= x̂(−ω). (13.5)

Thus, the symmetry holds.
There are other symmetries to be aware of: when the signal is imaginary. When it is even.

When it is odd. See Karl for a nice picture of various possibilties. These are easy enough to verify
on your own.

But the most important one is the one about real signals.



Chapter 14

The uncertainty principle

Fact: if a signal is concentrated in the time domain, then its energy is spread out in the frequency
domain. And conversely: is the energy is concentrated in the frequency domain, then the signal
must be spread out in the time domain.

As a simple example, in Figure 14.1 we show the Gaussian signal f(t) = e−t
2

and its correspond-
ing Fourier transform, which is f̂(ω) =

√
πe−π

2ω2
. We note the signal is rather wide (broad), and

the Fourier transform is narrow. Compare this with the example in Figure 14.2 we show the Gaus-
sian signal f(t) = e−9t2 and its corresponding Fourier transform, which is f̂(ω) =

√
π/9e−π

2ω2/9.
Here, the signal is broad, and the Fourier transform is narrow.
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Figure 14.1: A wide Gaussian signal, and its Fourier transform, which is narrow.

For another example, in Figure 14.3 we show a boxcar signal f(t) = 1 on [−2, 2] and its
corresponding Fourier transform, which is a sinc function. We note the signal is rather wide
(broad), and the Fourier transform is narrow. Compare this with the example in Figure 14.4,
where we show a narrow boxcar signal supported on the interval [−1/3, 1/3], and its corresponding
Fourier transform, which is a wider sinc function.
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Figure 14.2: A narrow Gaussian signal, and its Fourier transform, which is wide.

This is the essence of the uncertainty principle. It can be made more general, applying to
arbitrary signals – examples more general than the simple Gaussians or boxcars.

14.1 Boring math calculations: FT of Gaussians and boxcars

Don’t get distracted by the following mathematical computations. The important part of the
uncertainty principle is the wide/narrow pairing in time/frequency. This section just computes the
details to support the observations above.

We can quickly compute the Fourier transform of a Gaussian. First note that by completing
the square, we can write

−t2 − 2πiωt = −(t+ πiω)2 − π2ω2, (14.1)

and so the (real line) Fourier transform of the Gaussian f(t) = e−t
2

is given by

f̂(ω) =
∫ ∞
−∞

e−t
2
e−2πiωt dt (14.2)

=
∫ ∞
−∞

e−t
2−2πiωt dt, complete the square (14.3)

=
∫ ∞
−∞

e−(t+πiω)2−π2ω2
dt, then split up the exp (14.4)

=
∫ ∞
−∞

e−(t+πiω)2e−π
2ω2

dt, then pull out one exp (14.5)

= e−π
2ω2

∫ ∞
−∞

e−(t+πiω)2 dt, change variables x = t+ πiω (14.6)

= e−π
2ω2

∫ ∞
−∞

e−x
2
dx, and integrate (14.7)



14.1. BORING MATH CALCULATIONS: FT OF GAUSSIANS AND BOXCARS 89

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Time t

A
m

pl
itu

de

−4 −3 −2 −1 0 1 2 3 4
−1

0

1

2

3

4

Frequency ω

M
ag

ni
tu

de

Figure 14.3: A wide boxcar signal, and its Fourier transform, which is narrow.

= e−π
2ω2√

π. (14.8)

That is, the Fourier transform of f(t) = e−t
2

is f̂(ω) =
√
πe−π

2ω2
, which is also a Gaussian, with

a different width.
For more general Gaussians, f(t) = e−(t/a)2 , the Fourier transform is f̂(ω) =

√
π
a e
−π2a2ω2

. You
can verify this using a simple change of variables. Note that the width of the signal is proportional
to the parameter a, and the width of the Fourier transform is proportional to 1/a. So, when a is
large, the signal is wide and the FT is narrow. And vice versa, as shown in Figures 14.1 and 14.2.

For a boxcar supported on [−a, a], the Fourier transform is

f̂(ω) =
∫ a

−a
e−2πiωt dt =

sin(2πaω)
πω

. (14.9)

Again, if a is large, the boxcar is wide, and the sinc function is narrow. And vice versa, as shown
in Figures 14.3 and 14.4.

If you think these signals are too simple, consider a modulated Gaussian signal f(t) = e−(t/a)2e2πiω0t.
Its Fourier transform is also a Gaussian, but unmodulated, and centered at frequency ω0 in the fre-
quency domain. This signal represents an oscillating sinusoid that starts out with zero amplitude,
grows to full strength at time t = 0, and then decays to zero again. This is a useful model of a
physical oscillating signal.

You might also consider a modulated boxcar. This represents an oscillating signal that is
abruptly turned on, then turned off. Its FT is a sinc function, centered at frequency ω0.
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Figure 14.4: A narrow boxcar signal, and its Fourier transform, which is wide.



Chapter 15

Calculus and the Fourier transform

The Fourier transforms of a function on the real line and its derivative are closely related: namely,
if f̂(ω) is the FT of a function f(t), then the FT of the derivative f ′(t) is given by

(̂f ′)(ω) = 2πiωf̂(ω), for all ω ∈ R. (15.1)

That is, we just get the FT of the function, multiplied by 2πiω.
Similarly, for a 1-periodic function, the FT of the derivation is given by the sequence

(̂f ′)(n) = 2πinf̂(n), for all n ∈ Z. (15.2)

What does this say? First, it says that the derivative acts like a multiplier in the Fourier domain.
Specifically, it is multiplication by the linear function ω 7→ 2πiω. Since this function is large in
magnitude, for large frequencies ω, it means that derivatives will boost (amplify) high frequency
signal, while attenuating low frequencies. Derivation is sort of the ultimate in high pass filtering.

This can be a problem in real systems, and in mathematical calculations. Noise tends to be
distributed across all frequencies; differentiation will boost the high frequency noise, which really
can mess up your system.

Second, this tells us that differentiation is a linear time invariant system, since is acts a mul-
tiplication in the frequency domain. Finding its impulse response is tricky – it turns out to be a
distribution, which is a generalized function. We won’t discuss these in this class.

Third, it suggests we have a way now to solve certain differential equations. For instance,
suppose we wish to find a solution to the ODE

y′′ − y = e−t
2
, (15.3)

where y = y(t) is some unknown function on the real line. Applying the Fourier transform to this
equation, we get

(2πiω)2ŷ − ŷ = e−π
2ω2

, (15.4)

where we use the fact the the FT of the Gaussian e−t
2

is e−π
2ω2

. Simplifying this last equation
algebraically, we have

ŷ(ω) = − e−π
2ω2

4π2ω2 + 1
. (15.5)

Thus the solution y(t) will be the inverse Fourier transform of this Gaussian divided by 4π2ω2 + 1.
That is,

y(t) =
∫ ∞
−∞
− e−π

2ω2

4π2ω2 + 1
e+2πiωt dω. (15.6)
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We may have to solve this integral numerically, but at least in principle we have a way of computing
the solution to the differential equation.

Finally, we note that while the function f̂(ω) might be well-behaved, multiplying it by 2πiω
might cause it to grow quickly as ω grow to infinity. This could cause the derivative to behave
badly, perhaps even so badly that it cannot exist. We will see a student presentation in class of
precisely such a “bad” function: Weierstrauss’ example of a continuous, no-where differentiable
function.

15.1 More math: derivatives

Let’s see where these derivative formulas come from.
For a 1-periodic function f(t), we have from the inverse formula for sequences that

f(t) =
∑
n

f̂(n)e+2πint, (15.7)

and so if we differentiate term by term, we have

f ′(t) =
∑
n

f̂(n)
d

dt
e+2πint =

∑
n

f̂(n)2πine+2πint. (15.8)

On the other hand, we know by definition that

f ′(t) =
∑
n

(̂f ′)(n)e+2πint, (15.9)

so, we can read off the Fourier coefficients for the derivative from the factors in the sum, thus

(̂f ′)(n) = 2πinf̂(n). (15.10)

For a function f(t) on the real line, we have from the inverse formula that

f(t) =
∫
f̂(ω)e+2πiωt dω, (15.11)

and so if we differentiate under the integral sign, we have

f ′(t) =
∫
f̂(ω)

d

dt
e+2πiωt dω =

∫
f̂(ω)2πiωe+2πiωt dω. (15.12)

Again, we know by definition that

f ′(t) =
∫

(̂f ′)(ω)e+2πiωt dω, (15.13)

so we can read off the Fourier coefficients for the derivative from the factors in the integrand, and
thus

(̂f ′)(ω) = 2πiωf̂(ω). (15.14)

To be a good mathematician, I should really justify this term-by-term differentiation, or the
derivative under the integral sign. Let’s not. Just let me assure you that if we are really interested,
we could do it.



Chapter 16

Special Filters

We know that we can filter a signal by convolving it with some other signal, which is the general
form of a LSI system. In the Fourier domain, the convolution turns into multiplication.

So this gives us a new way to filter signals. Fourier transform it, multiply it by some fixed
function that has the frequency response we want, then inverse Fourier transform the results to get
the filtered signal.
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The signal, a chirp with noise.
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The filter response curve. A lowpass response.
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The filtered signal, noise and high freqs reduced.

Figure 16.1: A signal, filtered with a low-pass brick wall, to get the smoothed output.

Symbolically, we take our signal x, Fourier transform it to x̂, then multiply it by the filter
response function h to get h · x̂. Then we apply the inverse Fourier transform. Or, in MATLAB
syntax, we have
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y = ifft( h.* fft(x))

Since the FFT is fast, this is a fast way to do a filter.
For instance, given a slowly varying signal with some high frequency noise, we can filter it by

multiplying the FT with a “brick wall” type of multiplier, that is equal to 1 on the low frequencies,
and 0 on the high frequencies. The result is shown in Figure 16.1.

To do a high pass filter, you change the brick wall function to be equal to zero on the low
frequencies, and equal to one on the high frequencies.

Remember that the function h should respect the symmetries of the Fourier transform, if you
want to get a real-valued signal as an output. So for instance, in MATLAB, we want h(2), to equal
h(N), h(3) to equal h(N-1), h(4) to equal h(N-2), etc. As an example, here is the lowpass brickwall
that I used in the example above:

h = [ones(1,K+1),zeros(1,N-K-K-1) ones(1,K)];

Here, N is the length of the vector, and K counts how many ones to put in the pass band. See
how the ones are both at the beginning and at the end of the h vector.

Here is another example of a special filter. We do a phase rotation of a signal, by setting the
Fourier multiplier h to equal e2πis on the positive frequencies, and e−2πis on the negative frequencies.
The parameter s controls how much of a rotation we get. The value s = .25 is a rotation by a
quarter cycle, and turns peaks into zero crossings, and vice versa. The value s = .5 is a rotationby
half a cycle, and just flips a waveform upside down. The value x = 1.0 is a rotation by a full cycle,
which of course means no change: we have walked around the circle and returned to the beginning.
Figure 16.2 shows the result of various phase rotation on a nice Rickard wavelet.

The code for this phase rotation is listed here.

% PhaseRot.m
% Computes a nice animation of a rotating wavelet
% We use a simple allpass filter by multiplying by e^{+/- theta)
% in the positve and negative frequency space
N=10001;
N2=501;
t = linspace(-5,5,N);
x = (.5-t.^2).*exp(-t.^2);
h = zeros(1,N);
for s=0:.01:1

h(2:N2) = exp(2*pi*i*s);
h((N2+1):N) = exp(-2*pi*i*s);
plot(t,real(ifft(h.*fft(x))))
xlabel(s)
ylim([-.5,.5])
pause(.25)

end
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Figure 16.2: A wave being phase rotated through one complete cycle.
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Chapter 17

FIR, IIR filters

So, if we can just filter in the Fouier domain, why do we ever worry about FIR and IIR filters?
The main reason is that to have do the FFT of a signal, you have to have the whole signal in the

computer first. There are many situations where this is not the case. For instance, you might have
a long signal that is too big to store in the computer. This often happens with massive amounts of
audio data, video data, or even raw seismic data.

Or you might have signals coming at you continuously and you can’t wait to receive the whole
thing before processing it. For instance, in a telephone conversation that is being processed, you
have to receive and process the speech as it arrives, and send it off to the receiver as the sound is
happening.

For these reasons, we might need to use FIR or IIR filters to process the signal as it comes in.
This raises the question of how to design an FIR or IIR filter with desired characteristics.
We don’t have time to go into the details. But a quick idea is this. Say you want your filter

to have a frequency response given by function h. Then the filtered response is the inverse FT of
h · x̂. By the convolution theorem, this is just ȟ∗x, the convolution of the signal x with the inverse
transform of h. So now it is just a matter of using ȟ to design the coefficients in your FIR filter.

(There are problems with this, mainly that ȟ is rarely a finite sequence. And we need finite
sequences to get an FIR. There are tricks to get good approximations to this.)
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Chapter 18

Laplace transforms

Oops, no time for this. The basic idea is to transform a function f(t) on the positive real line as

f̂(s) =
∫ ∞

0
f(t)e−st dt. (18.1)

Because of the exponential decay, this integral usually converges for s sufficiently large (and pos-
itive). Turns out this is good for solving certain differential equations, especially those that show
up in electrical engineering.
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Chapter 19

Wavelet transforms

Fourier theory is concerned with the analysis and synthesis of signals using sinusoids of various
frequencies. By contrast, wavelet theory is concerned with the analysis and synthesis of signals
using wavelets of various transations and dilations. A wavelet is a small wave, and some examples
are shown in Figure 19.2.
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Figure 19.1: Four different examples of wavelets, or small waves.

Now, if this idea of analysis and synthesis is too abstract, let’s think of food instead of signals.
Nutritional theory allows us to analyze any food to determine what it is made up of. For instance,
a chocolate bar could be analyzed, and it is determined that it is made up of 20 grams of sugar, 10
grams of milk protein, 30 grams of cocoa, and so on. To synthesize a chocolate bar, we take these
different component (sugar, milk, cocoa, etc) and mix them together in the appropriate amounts,
to create a chocolate bar.

The same thing with signals. To analysis a signal is to determine what components (eg sine
waves) are present in the signal. To synthesize a signal is to reconstruct it as a sum of various

101



102 CHAPTER 19. WAVELET TRANSFORMS

components (eg. a linear combination of sine waves). In Fourier theory, we analyze a signal f on
an interval by computing its Fourier coefficients

f̂(n) =
∫
f(t)e−2πint dt, (19.1)

and then we can reconstruct this same signal as a sum of sinusoids

f(t) =
∑
n

f̂(n)e2πint. (19.2)

19.1 Dilations and translations of a wavelet

For wavelet theory, we start with a single wavelet function φ(t), such as any one of the examples
in Figure 19.2. We can translate the wavelet φ(t) by shifting the argument to φ(t− b), where b is a
fixed constant. We dilate the wavelet by scaling the argument as φ(t/a), for some constant a 6= 0.
It is useful to rescale the height of the function φ(t/a) so that the energy (integral of its square)
stays the same. We combine both the translation and scaling of the wavelet to define a the function

φa,b(t)
1√
|a|
φ(
t− b
a

). (19.3)

It is this functions φa,b(t) that we will use to analyze and synthesis any given signal f(t).
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Figure 19.2: A wavelet φ(t) centered at zero, its translate φ(t−3), and the translate/dilate 1√
2
φ( t−7

2 ).
Note the dilated one is twice as wide, and 70% of the height of the others.
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19.2 Analysis: wavelet coefficients

Given a function f(t) on the real line, and a fixed wavelet φ(t), we analyze the signal by defining
the wavelet coefficients ca,b as the numbers obtained from the inner product of function f with
wavelet φa,b. That is, we define

ca,b = 〈f, φa,b〉 =
∫ ∞
−∞

f(t)φa,b(t) dt, (19.4)

where this can be computed for any real numbers a, b with a 6= 0.
These coefficients ca,b tell us a lot about the function f(t). The index a is scale, while the index

b is position. The number ca,b tells us how the function f(t) behaves at a scale of a and a position
of b. The b part is easy: it just says we have local information about the function near time t = b.
The a part is a bit harder to understand. For large a, like a = 100, the coefficient tells us if the
function has “large scale features” that look a lot like the original wavelet φ spread out by a factor
of 100. For small a, like a = 0.01, the coefficient tells us if the function has “small scale features”
that look a lot like the original wavelet φ, shrunk down to a narrow range. Roughly speaking,
large scale corresponds to slowly changing, low frequency behaviour, while small scale corresponds
to rapidly oscillating, high frequency behaviour. That is, scale roughly indicates something like 1
over frequency.

That’s it for analysis. Notice that the wavelet analysis describes local information about the
signal, which is quite different from the Fourier analysis we have seen. For instance, a simple boxcar
has Fourier coefficients that are non-zero almost all frequencies; thus a small boxcar (non-zero on
a narrow interval) influences the Fourier coefficients out to infinity. For the wavelet coefficients of
a boxcar, only those coefficients ca,b with b near position of the boxcar will be non-zero. So the
boxcar only influences a narrow range of the coefficients ca,b.

As an example of analysis, we take a function f(t) = sin(200πt3) which is a simple chirp (an
oscillating signal that starts with a slow oscillations, and ramps up to a fast oscillation. Taking the
wavelet transform, we compute the values of ca,b for a range of values a, b and plot. The result is
shown in Figure19.3. The display shows how the signal changes in time: at the left, it starts with
low frequencies, then ramps up to the right with high frequency. In this case, we used a Morlet
wavelet to compute the wavelet coefficients. Other wavelets will show similar behaviour, but the
details will be different.

I want to stress that you can pretty much choose any function as your analyzing wavelet φ(t).
Whether this gives you anything useful depends on the choice of φ, which is why so much work is
done in applications to find useful wavelets. Often a wavelet is designed specially for a particular
application. When you start using wavelets, the first thing to check out is what wavelets are other
people using in applications that are related to yours.

19.3 Synthesis: reconstructing the signal

Synthesis is harder than the analysis. We ask the question: is it possible to rebuild the signal f(t)
by a sum, or integral involving the coefficients ca,b and the functions φa,b(t). The answer is yes,
provided the wavelet φ was carefully designed.

In the orthonormal wavelet case, we have a reconstruction formula given by

f(t) =
∑

a = 2n, b = m2nca,bφa,b(t), (19.5)
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Absolute Values of Ca,b Coefficients for a =  512 477.7129 445.7219 415.8732 388.0234 ...
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Figure 19.3: A plot of the wavelet coefficients for a chirp signal. See how it clearly indicates a
signal which starts on the left at a low frequency (high scale a) and ends up at the right with a
high frequency (low scale a.

where the sum is taken over all scales of the form a = 2n a power of two, and b = m2m an integer
multiple of that same power. Here, the design problem is to find a wavelet φ so that these translates
and dilates are all orthogonal.

It’s not hard to see that the Haar wavelet works. But so do the Daubechies wavelets, which is
an amazing piece of mathematics.

In the continuous wavelet case, we have a reconstruction formula given by

f(t) =
1
C

∫ ∞
−∞

∫ ∞
−∞

ca,bφa,b(t)
da db

a2
, (19.6)

where the normalizing constant C is given by

C =
∫ ∞
−∞

|φ̂(ω)|2

|ω|
dω. (19.7)

Here, we need to know this second integral is finite. This puts a condition on the wavelet that its
Fourier transform φ̂ vanishes at ω = 0. Turns out that we have many choices for a wavelet φ that
satisfies this condition.

With more time, we would go into more details.

19.4 Fast transforms

The discrete wavelet transform takes a vector of length N and computes a new vector, also of length
N, consisting of certain wavelet coefficients ca,b. It is a linear transformation, just as the discrete
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Fourier transform is. However, it is much faster, on the order of N operations, rather than N logN
for the FFT. This makes the wavelet transform advantageous in many situations.

The details of how this is done is best left to another course. The key idea is using two pairs of
matched, FIR filters that do all the necessary computations in computing the wavelet coefficients,
and reconstruction the signal from those coefficients. The mathematics involved in designing those
FIR filters is elegant, and quite intriguing. But, we are out of time! There are many software
sources available to do these transforms efficiently (including MATLAB).

19.5 Multiresolution analysis

Oh dream on. We have no time for this here. Sorry.

19.6 Application: data compression

There is this amazing phenomena with the wavelet analysis of certain data. Often, many of the
wavelet coefficients ca,b are zero, or close to zero. So you can in principle forget about them, and
reconstruct your signal using only the larger non-zero coefficients. This is not a perfect reconstruc-
tion. However, it is close enough to be useful in many applications.

For instance, in a digital image, your raw data may include 16 megapixels, which means at
least 16 million numerical values to store on your computer. By computing the wavelet transform,
the computer may discover that of the 16 million wavelet coefficients, only about 5% of them are
significantly different from zero. So we store these 5%, and forget the rest. When it comes time to
reconstruct the image (say to display on the screen), we only use those 5% non-zero coefficients,
and build a very good approximation to the original image.

So, instead of storing 16 megs of data, we get away with storing about 800,000 numbers. This
is a significant savings!

The MATLAB wavelet toolbox contains code to compute these kinds of compressions.
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APPENDIX 1: Collected wisdom

In case we are missing the forest for the trees, here are some basic facts about signal processing
that you should always keep in mind. (I will add to this as the course goes along.)

Signals:

• Signals are functions (of time, space, etc).

• Many useful signals are sums of sines and cosines.

• A sine wave or cosine wave is specified by a frequency and an amplitude. Negative frequencies
give basically the same signal as a positive frequency.

• Sines, cosines are the same function, just shifted in time.

• Unless we know the start time, sine waves and cosine waves at the same frequency are basically
the same thing. Same for any shifts of these waves.

• The complex sinusoid e2πiωt makes the algebra of sines and cosines easy. But in real life, we
never really see complex valued waves.

Physical signals:

• We hear sounds in the range 20Hz to 20,000 Hz.

• Seismic waves are measured in the range 4Hz to 150 Hz (approx.) As technology improves,
we expand this range.

• Radio waves are in the range of kilohertz (AM), megahertz (FM), gigahertz (cellphones).

• Sound waves are acoustic waves (variations in air pressure). Seismic waves are elastic waves
(solid motion). Radio waves are electromagnetic waves.

Sampled signals:

• For practical reasons, we sample signals.

• Sample rate determines the highest frequency we can represent

1
2

(sample rate) = Nyquist rate. (19.8)

• Frequencies higher than that are aliased, and cause errors.

• In real systems, we use electronics to eliminate those higher frequencies, before sampling.
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Systems:

• Basic mode is “Signal in → Signal out.”

• Convolution gives a LSI system, and vice versa.

• Specify a LSI system by its impulse response h.

• Practical LSI system given by finite h or ratio of two such finite ones.



APPENDIX 2: Eigenvalues and
eigenvectors

Recall a matrix A has an eigenvector x 6= 0 and an eigenvalue λ if they satisfy

Ax = λx. (19.9)

That is, the matrix applied to vector x just returns the same vector x, multiplied by the number
λ.

As an example, with the matrix A =
[

2 4
4 2

]
, we find two eigenvectors [1, 1] and [1,−1] by

observing [
2 4
4 2

] [
1
1

]
= 6

[
1
1

]
[

2 4
4 2

] [
1
−1

]
= −2

[
1
−1

]
.

So 6 and -2 are the eigenvalues of the matrix. Notice that 6− 2 = 4, the trace of the matrix (sum
of the diagonal elements), while 6 ∗ (−2) = −12, the determinate of the matrix. This is a general
property of the eigenvalues: they tell us a lot about the matrix.

In the frequency response, the only difference is that we are working in infinite dimensions.
The eigenvectors are signals x that are complex exponentials at frequency ω. The corresponding
eigenvalues are the complex numbers H(ω). That is, when x is a complex exponential, we have the
eigenvector equation

h ∗ x = λx, (19.10)

where the eigenvalue λ is the (complex) number λ = H(ω), given by the frequency response
evaluated at ω.
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APPENDIX 3: Sums and integrals of
exponentials

We will use the following facts over and over again in signal processing:∫ 1/2

−1/2
e−2πinω dω =

{
1 n = 0,
0 n = ±1,±2,±3, . . . ,

(19.11)

and
N−1∑
k=0

e−2πink/N =
{
N n = 0
0 n = 1, 2, . . . , N − 1.

(19.12)

The integral result is easy to see. When n = 0, the exponential has a zero in the argument, so
we have e0 = 1, and the integral of one over an interval of length one is just one. When n 6= 0,
the exponential can be written as the sum of a cosine and i times a sine, each of which has exactly
n cycles in the interval [−1/2, 1/2]. When you integrate, the positive and negative parts of each
cycle cancels, giving a total integral of zero. You could also do this directly by computing the
antiderivative of the exponential, and noticing it too is periodic.

Note there is nothing special about the interval [−1/2, 1/2]. We could replace it with any
interval of length one.

The sum result is also easy to see. When n = 0, the exponential has a zero in the argument, so
we are simply summing N copies of e0 = 1, which adds up to N . When n = 1, 2, . . . , N − 1, we are
summing up powers of the non-trivial root of unity z = e−2πin/N . These powers zk are uniformly
spread around the unit circle, so like uniformly spread out vectors, they sum to zero.

Or, if you prefer a more explicit calculation,

∑
k

zk = z0 + z1 + z2 + · · ·+ zN−1 =
zN − 1
z − 1

= 0, (19.13)

since z = e−2πin/N is an N -th root of unity, so zN = 1.
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APPENDIX 4: Music and frequencies

Humans can hear sounds in the range of 20Hz to 20,000 Hz. (Hz = Hertz = cycles per second).
Basically any periodic wave that repeats itself that many times a second will be heard by the human
ear as a musical tone. The frequency (cycles per second) corresponds to pitch of the note. The low
(deep) sounds have the low frequency (eg 25) and the high (shrill) sounds have the high frequency

A piano plays notes in the range of about 25 Hz to 4200 Hz. The note “A above middle C” is
defined as a pitch of 440 Hz. All the other pitches are defined relative to that frequency. The equal
tempered scale uses powers of the number α = 12

√
2 to define other frequencies as

freq = 440 ∗ αn, (19.14)

where n is the number of semitones above “A”, or below it for n negative.
Doubling the frequency (n = 12 semitones up) corresponds to moving up an octave in the

musical scale. Halving the frequency (n = −12 semitones down) moves down an octave.
Bach was involved in the notion of an equal tempered scale, which uses the power of the 12th

root of 2 to determine frequencies. You may be familiar with his keyboard composition called “The
Well-tempered Klavier.” This was motivated by the desire to get all instruments in an orchestra to
sound in tune, not matter what key they were playing in.

Before equal tempering, notes were based on the idea that frequencies that were related as
the ratio of simple fractions often sound good together. This is deeply connected to the notion of
harmonics in musical tones, but it seems rather mathematical.

For instance, the frequencies 440Hz, 550Hz, 660Hz all sound good together, and their ratios are

550
440

=
5
4

660
440

=
3
2
, (19.15)

which are simple fraction with small integers in the fractions. These three notes correspond to the
three notes in a major triad (A, C#, E). It is interesting to note that the middle note, 550Hz,
would actually be as high as 554Hz in the equal tempered scale. To those of you with good ears,
the 554Hz tone sounds a little sharp. We get this 554Hz value by going up four semitones in the
equal tempered scale, so 440 ∗ 24/12 = 554.37.

You can experiment with these ideas in MATLAB by setting up some simple signals and playing
them out.

Fs = 10000; % the sampling rate
dt = 1/Fs; % the time step
T1 = 0:dt:1; % one second of time, in steps of dt
A = sin(2*pi*440*T1); % the note A above middle C
Cs = sin(2*pi*550*T1); % the note C#
E = sin(2*pi*660*T1); % the note E
sound([A,Cs,E],Fs); % play the notes one after the other
sound(.3*(A+Cs+E),Fs); % play the notes all together as one
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If you are getting tired of hearing pretty sine waves, try raising it to some (odd) power, to get
some richer harmonics in your music.

Fs = 10000;
dt = 1/Fs;
T1 = 0:dt:1;
A = sin(2*pi*440*T1).^5; % the note A above middle C, with harmonics
Cs = sin(2*pi*550*T1).^5; % the note C#
E = sin(2*pi*660*T1).^5; % the note E
sound([A,Cs,E],Fs);
sound(.3*(A+Cs+E),Fs);

To get the major scale, using fractions instead of powers of two, you can use the ratios

1
1
,
9
8
,
5
4
,
4
3
,
3
2
,
27
16
,
15
8
,
2
1
. (19.16)

In the A major scale, this corresponds to frequencies

440, 495, 550, 586.7, 660, 742.5, 825, 880Hz. (19.17)

Some might argue that other fractions are better. For instance, we might replace the 5/4 with
81/64 = (1/4) ∗ (3/2)4. If you know something about music theory, you will see this is connected
to the circle of fifths idea.

Now, just because its fun, try this. It is a sweep through the frequency range

Fs = 10000;
dt = 1/Fs;
T1 = 0:dt:1;
sweep = sin(2*pi*440*T1.^3); % a sweep
sound(sweep,Fs);


