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Proposition (Second-order sufficient conditions—unconstrained case).
Let e C? be a function defined on a region in which the point x* is an
interior point. Suppose in addition that

i) Vf(x*)=0 (7
ii) F(x*) is positive definite, ®)
Then x* is a strict relative minimum point of f.
‘of. Since F(x*) is positive definite, there is an @ > 0 such that for all d,
{(x*)d = ald|]®. Thus by the Taylor’s Theorem (with remainder)
J(* + d) — f(x*) = $d'F(x*)d + o(]d]?)
> (a/2) |41 + o(ld]?).

“ small [d] the first term on the right dominates the second, implying that
h sides are positive for small d.

CONVEX AND CONCAVE FUNCTIONS

rder to develop a theory directed toward characterizing global, rather
1 local, minimum points, it is necessary to introduce some sort of
vexity assumptions. This results not only in a more potent, although
‘¢ restrictive, theory but also provides an interesting geometric inter-
ation of the second-order sufficiency result derived above.

Definition. A function f defined on a convex set Q is said to be convex
if, for every x;,x,€Q and every «, 0 < « < 1, there holds

floxy + (1 - @)x;) < af (%) + (1— @)f (x,).

If, for every 0 < a <1 and x, # x,, there holds

.HAQHH {1~ nvxuv < ef(x) + (1- a)f(x3),

then f is said to be strictly convex.

Several examples of convex or nonconvex functions are shown in Fig.
Geometrically, a function is convex if the line joining two points on its
h lies nowhere below the graph, as shown in Fig. 6.2a, or, thinking of a
tion in two dimensions, it is convex if its graph is bowl shaped.

Next we turn to the definition of a concave function.

Definition. A function g defined on a convex set Q is said to be concave

f the function f= — g is convex. The function g is strictly concave if
—g is strictly convex.

6.3

Convex and Concave Functions
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Combinations of Convex Functions

We show that convex functions can be combined to yield new: convex

functions and that convex functions when used as constraints yield convex
constraint sets.

Proposition 1. Let f, and Ja be convex functions on the convex set Q.
Then the function f, + f, is convex on Q.
Proof. Letx;,x,€0Q, and 0 < & < 1. Then
Salox, + (1 0X;) + folox, + (1- ®%)x;)
S al i) + L )T+ (1= QL f1(x2) + f£o(x2)]. |

Proposition 2. Let f be a convex function over the convex set Q. Then
the function af is convex for any a > 0,

Proof. Immediate,

Note that through repeated application of the above two propositions

it follows that a positive combination afi +ayf; + -+ + a,f, of convex
functions is again convex.

Finally, we consider sets defined by convex inequality constraints.

Proposition 3. Let f be a convex Junction on a convex set Q. The set
Fo={x:xeQ, f(x) < ¢} is convex for every real number c.

Proof. Let x;,x,eI'.. Then J(x) €e,f(x;) <cand for 0 < ¢ < 1,
Slox; + (1= 0)Xz) < af(x,) + (I-a)f(x;) e
Thus ax; + (1 — wWx,el.. |

We note that, since the intersection of convex sets is also convex, the set
of points simultaneously satisfying

bﬁv@ =5 Cy, I\.nﬁuﬂv m Cay vt .u.\.—amuo ....m Cony
where each f; is a convex function, defines a convex set.

Properties of Differentiable Convex Functions

If a function f'is differentiable, then there are alternative characterizations
of convexity.

Proposition 4. Let f&C'. Then [ is convex over a convex set if and
only if
() 2 fX) + VX — x) ©)
Jor all x, ye Q.
Proof. First suppose f is convex. Then for alle, 0 g1,

flay + (1 = @)x) < af (y) + (1 — @)f(x).
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Thus for0 < e <1

Sl oy =) = /) ¢ 15y — s,

o

Letting « — 0 we obtain
V(G — %) < f(y) — [

This proves the “only if”* part.
Now assume

SO 2 ) + V)G — %)
forallx,ye Q. Fixx,,x,eQanda,0< a <l. Settingx = ax; +(1— o)X,
and alternatively y = x; or y = X,, we have .

f(x)) = f(x) + VX)X, — %) (10)

J(x2) 2 f(x) + V)(x; = ). (11)

Multiplying (10) by « and (11) by (1 — @) and adding, we obtain -
2f(x) + (1= @)f(x;) = f(¥) + Vf()[ex, + (1 = a)x; = X].
But substituting x = ax, + (I — «)x,, we obtain
af(x)) + (1 — @)f(x;) = flexs + (1= 0x2)- |

The statement of the above proposition is illustrated in ‘m.ﬁ. Mm.wmmwmﬂmwn
: | characterization of the origina .
be regarded as a sort of dua 22 oo
i in Fi iginal definition essentially sta
illustrated in Fig. 6.2. The origin . . . s
interpolation between two points overestimates the function, ,Hcr:w Mﬂw?usﬁ
proposition states that linear approximation based on the loca

underestimates the function.

|
|
_ - flx) + V()Y - %)
_

X O

Fig. 6.3 Illustration of Proposition
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For twice continuously differentiable functions, there is another
characterization of convexity.

Proposition 5. Let feC?>. Then f is convex over a convex set Q

containing an interior point if and only if the Hessian matrix ¥ of f is
positive semidefinite throughout Q.

Proof. By Taylor’s theorem we have
JO) =) + V) — %) + 3y - x)'Fx + ey —x)y —x) (12)

for some «, 0 < @ < 1. Clearly, if the Hessian is everywhere positive semi-
definite, we have

fO) 2 /(%) + VA(x)(y — x) (13)

which in view of Proposition 4 implies that f is convex.
Now suppose the Hessian is not positive semidefinite at some point
xeQ. By continuity of the Hessian it can be assumed, without loss of
generality, that X is an interior point of Q. There is a ye Q such that

(y — x)'F(x)(y — x) < 0. Again by the continuity of the Hessian, y may
be selected so that for all @, 0 € « < 1,

(y = x)'F(x + a(y — x))(y — x) <0.

This in view of (12) implies that (13) does not hold; which in view of
Proposition 4 implies that f is not convex. |

The Hessian matrix is the generalization to E" of the concept of the
curvature of a function, and correspondingly, positive definiteness of the
Hessian is the generalization of positive curvature. Convex functions have
positive (or at least nonnegative) curvature in every direction. Motivated
by these observations, we sometimes refer to a function as being locally
convex if its Hessian matrix is positive semidefinite in a small region, and
locally strictly convex if the Hessian is positive definite in the region. In these
terms we see that the second-order sufficiency result of the last section
requires that the function be locally strictly convex at the point x*. Thus,
even the local theory, derived solely in terms of the elementary calculus, is
actually intimately related to convexity—at least locally. For this reason
we can view the two theories, local and global, not as disjoint parallel
developments but as complementary and interactive. Results that are based
on convexity apply even to nonconvex problems in a region near the solution,
and conversely, local results apply to a global minimum point.

6.4 MINIMIZATION AND MAXIMIZATION OF CONVEX
FUNCTIONS

We turn now to the three classic results concerning minimization or
maximization of convex functions.

0.9 T R I . N e e = = = =

Theorem 1. Let f be a convex function defined on the convex .V,Q D ,.sz
the set T where f achieves its minimum is convex, and any relative minimum

of [ is a global minimum.

Proof. If f has no relative minima the theorem is valid by default. >%:Mw
now that ¢, is the minimum of f. Then clearly ﬂ.H {x:f(x) € co,XE
and this is convex by Proposition 3 of Em Hmm« section. .

Suppose now that x*€Q is a relative minimum ﬁ.o:: of f, HM .
there is another point y € Q with f(y) < f(x*). On the line ay + (1 — 2)x¥,
0 < o <1 we have

flay + (1= @)x*) < af(¥) + (1 — Df(*) < f(x*)
contradicting the fact that x* is a relative minimum point. [

We might paraphrase the above theorem as m.wﬁsm that for oowcmm
functions, all minimum points are located together (in a convex set) mw .
relative minima are global minima. The :ax.ﬁ.Emome says that i w_w
continuously differentiable and convex, then mm:mwwo:on of Ea.mnmﬂ o_w. .mm
necessary conditions are both necessary and sufficient for a point to be

global minimizing point.

Theorem 2. Let f € C' be convex on the convex set Q. If EMR_ is awﬂz”_
x* € Q such that, for all ye Q, V(x*)(y — x*) >0, then X* is a gioba
minimum point of f over Q.

Proof. We note parenthetically that since y — x* is a feasible n_z.no_”%m%h
x*, the given condition is equivalent to the m_.m.ﬂ._oawn necessary no.:nm on
stated in Section 6.1. The proof of the proposition is immediate, si y
Proposition 4 of the last section

F@) = fx*) + VAN = x*) = (). 1

Next we turn to the question of maximizing a conveX mczn:.o:. over
convex set. There is, however, no analog of Theorem 1 for me:ﬂ_uﬂrw“.
indeed, the tendency is for the occurrence of numerous zo.:-m_owm M.n%..“:
maximum points. Nevertheless, it is nom_mw.own.ﬁo‘ prove one importan _.mm .
It is not used in subsequent chapters, but it 1s useful for some are
optimization.

Theorem 3. Let f be a convex function defined on the bounded, QE..\.;
\ ] it i jev ¢ oil
convex set Q. Iff has a maximum over it is achieved at an extreme p

of Q.
Proof. Suppose f achieves a global maximum at A* e, We mrob{.m_..wﬁ ﬂm,m
this maximum is achieved at some boundary point of Q. If x* 1s 1tse

*‘
boundary point, then there is nothing to prove, so mmm.can *x .H_m uoﬁﬁ@
boundary point. Let Lbe any line passing through the point X*. e inte:



180 Chapter 6 Basic Properties of Solutions and Algorithms

For twice continuously dilferentiable functions, there is another char-
aclerization of convexity.

Proposition 5. Let f € C% Then f is convex over a convex set §) con-
taining an interior point if and only if the Hessian matrix ¥ of f is positive
semidefinite throughout (1. '

Trc&.. By Taylor’s thcorem we have
fy) = f®) = Vfx)y — x) + Hy — X'F& + aly - )y - %) (12)

for some o, 0 < @ < . Clearly, if the Hessian is everywhere positive semi-
definite, we have

fy) = f(x) + VfX)(y = x), (13)

which in view of Proposition 4 implics that f is convex.

Now supposc the Hessian is not positive semidefinite al some point
x € . By continuity of the Hessian it can be assumed, without loss
of generality, that x is an interior point of ). There is a y € € such that
(y — x)'F(x)(y — x) < 0. Again by the continuity of the Hessian, y may be
selected so that for all ¢, 0 = o =< 1,

(y = x)'F(x + aly — x))(y — x) <0.

This in view of (12) implics that (13) docs not hold; which in view ol Prop-
osition 4 implies that f is not convex. [

The Hessian matrix is the gencralization to £” of the concept of the
curvature of a function, and correspondingly, positive definiteness of the
Hessian is the generalization of positive curvature. Convex functions have
positive (or at least nonnegative) curvature in every direction. Molivated by
these observalions, we sometimes refer to a function as being locally convex
il its Hessian malrix is positive semidelinite in a small region, and locally
strictly convex if the Hessian is positive definite in the region. In these lerms
we see that the second-order sufficiency result of the last section requires
that the function be locally strictly convex at the point x*. Thus, even the
local theory, derived solely in terms of the elementary calculus, is actually
intimately related Lo convexity—al least locally. For this reason we can view
the two theories, local and global, not as disjoint parallel developments but
as complementary and interactive. Results that are based on convexity apply
even lo nonconvex problems in a region ncar the solution, and conversely,
local results apply to a global minimum point.

6.5 MINIMIZATION AND MAXIMIZATION OF
CONVEX FUNCTIONS

We turn now to the three classic resulls concerning minimizalion or max-

6.5 Minimization and Maximization of Convex Funclions 181

Theorem 1. Let f be a convex function defined on the convex set (1.
Then the set U where £ achieves its minimum is convex, and any relative
minimam of fis a global mininmum.

Proof. If f has no relalive minima the theorem is valid by default. Assume
now that ¢y is the minimum of f. Then clearly T’ = {x: f(x) < ¢y, x € O}
and this is convex by Proposition 3 of the last section.

Suppose now that x* € Q is a relative minimum point of [, but that
there is another point y € €2 with f(y) < f(x*). On the linc ay + (I - a)x™*,
0 <a< | wehave

flay + (1 = a)x*) < af(y) + (1 — a)f(x*) < f(x¥),

contradicting the fact that x* is a relative minimum point. [

We might paraphrase the above theorem as saying that for convex func-
tions, all minimum points arc located together (in a convex set) and al
relative minima arc global minima. The next theorem says that if- [ i
continuously differentiable and convex, then satisfaction of the first-ordes
necessary conditions are both necessary and sufficient for a point (o be &
global minimizing point.

Theorem 2. Let f € C' be convex on the convex set Q. If there is «
point x* € Q such that, for all y € Q. Vf(x*)y — x*) = 0, then x* iy
global minimum point of f over £1.

Proof.  We note parenthetically that since y = x* is a feasible direction o
x*, the given condition is equivalent to the first-order necessary conditiol
stated in Scction 6.1. The proof of the proposition is immediate, since b
Proposition 4 of the last section

[(y) = J(x*) + VIO = x*) = (7). 1

Next we turn to the question of maximizing a convex function over :
convex sct. There is, however, no analog of Theorem 1 for maximization
indeed, the tendency is for ihe occurrence of numerous nonglobal relativ
maximum points. Nevertheless, it is possible to prove one important result
It is not used in subsequent chapters, but it is uscful for some arcas ©
optimization.

Theorem 3. Let [ be a convex function defined on the bounded, close
convex set 0 I [ has a maximum over QL it is achieved at an extrem
point of (1.

Proof. Suppose [ achicves a global maximum at x* € (. We show firs
that this maximum is achicved at some boundary point of . I x* is ilsc
a boundary point, then there is nothing to prove, so assume x* is not

boundary point. Let L be any line passing through the point x*. The w:_::
T R Ly e s tataeagal af the Bine T havine end noind

| iy



