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Functions of Three or More Variables
Increments and differentials of functions of more than two variables are defined
similarly. A function w= f(x, y, z) has increment

Aw=Af=flx+Ax, v+ Ay, 2+ Az) — f(x, y.0)

and differential

g r 5 F 9 f
dw=df = i Ax + i Ay 4 {— Nz
: ix iy iz
that 1s,
w dw aw
dw = f— dy + —dv+ r_ dz
ax ay dz

if, as in Eq. (10). we write dx for Ax, dy for Ay, and dz for Az

EXAMPLE 5 You have constructed a metal cube that is supposed to have edge |
length 100 mm, but each of its three measured dimensions x, y, and z may be in error
by as much as a millimeter. Use differentials to estimate the maximum resultingerror
in its calculated volume V =xyz.

Solution We need to approximate the increment
AV =V(100 + dx. 100 + dy, 100 + dz) — V(100, 100, 100)

when the errors dx, dy, and dzin x, y, and zare maximal. The differential of V=1y: F
18
dV=vzdx+xzdy+xydz

When we substitute v = v = z = 100 and dx = £1, dv = L1, and dz = 41, we gel
dV =100-100- (1) + 100 - 100 - (1) + 100 100 - (£=1) ==£30000.

It may surprise you to find that an error of only a millimeter in each dimension of 4
cube can result in an error of 30,000 mm? in its volume. (For a cube made of precious
metal, an error of 30 cm? in its volume could correspond to a difference of hundreds
or thousands of dollars in its cost.) ¢

Derivative Matrices

Matrix notation simplifies the description of differentials and linear approximation

for functions of several variables. Let f(x)= (x|, x2,.... . v, ) be a real-valued fune
tion ol 7 variables. If
x=[x; x3 - .v:,,]'r and h=[|ly h .- J’:,,]*r .

then the linear approximation formula for f takes the form

.} d -] .' } o
‘{j hy + ) I 'i""‘+,(;/hrr (12)
ax I 8‘.'-.‘3 d Ay

fx+h)y= f(x) +

with one term for each independent variable. We introduce the derivative matrix

af  af if

o 13
dx;  dxs dx, () B

f'xX)=[Dyf(x) Daf(x) - D”.f'(x)]={

of the function f(xy, xa,....: v,) of n variables; the elements of this row matrix are &
the » first-order partial derivatives of [ (assuming that they exist). ;
Using this derivative matrix. the linear approximation formula in (12) takes the

concise form
fx+h= f(x)+ f(x)h, (14)
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in pleasant analogy with the single-variable approximation f(x + /)~ flx+ f'(xh
(writing /1 for Ax here). Note that, because f'(x)isa 1 x 11 row matrix and h is an
n % 1 column matrix, the matrix product on the right-hand side in (14) is defined and
gives

fxh= D f(x)hy + Dy f(x)ha + -+ Dy f(X),.

thus providing the linear terms on the right-hand side in (12). In analogy with the
two-variable case in (5), the sum of these 1 linear terms is the differential d f = /" (x)h
of the function fof n real variables.

The derivative matrix f'(x) is defined wherever all of the first-order partial
derivatives of f exist. In Appendix K we give a proof of the linear approximation
theorem stated next. This theorem assures us (in effect) that if the partial derivatives
of [ are also continuous, then the linear approximation in (14) is a good approxima-

tion when |h| = \/.-"ﬁ + 3 -+ A2 is small.

THEOREM Linear Approximation

Suppose that the function f(x) of n variables has continuous first-order partial
derivatives in a region that contains the neighborhood |x —a| <r consisting of
all points x at distance less than r from the fixed point a. If a + h lies in this
neighborhood, then

fla+h)= fla) + f'(ah + e(h)h (15)

where e(h) =[e;(h) e>(h) ... €,()] is a row matrix such that each element ¢; (h)
approaches zero as h — 0.

REMARK 1  The multivariable function fis said to be continuously differentiable
at a point provided that its first-order partial derivatives not only exist, but are
continuous at the point. Thus the hypothesis of the linear approximation theorem
is that the function fis continuously differentiable in the specified neighborhood of
the point a.

REMARK 2 The matrix product
ehh=¢ (W +e(r + - +€,(I)A, (16)

in (15) is the error in the linear approximation—it measures the extent to which the
approximation f(a+ h)y= f(a) + f'(a)h fails to be an equality. We may regard the
conclusion of the linear approximation theorem as saying that if his “very small.”
then each element ¢;(h) is also “very small.” In this event. each summand in (16) is
a product of two very small terms, so we might say that the error e(hh is “very very
small.”

Now let us divide by

h| in Eq. (16). Then we see that

e(hyh Iy hz o hy,
W:EI(]I)U—H +£3(l1_)—|ﬁ+---—1—e,,(h)-u—lT—>ll (17)
as h — 0. The reason is that, for each i (1 =7 £ n).
£ <1 and eg(hy—0
(| —

ash — 0. Dividing both sides by |h| in Eq. (15) therefore gives the limit

. fla+h)— f(a)— f(a)h
lim —
h—0 |Il|

0. (18)

under the assumption that the function fis continuously differentiable near a.
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The Multivariable Newton’s Method
Consider the problem of solving the two equations

fla,y) =0,
glx,y) =0

(21)

in the two unknowns x and y. The two scalar-valued functions f : R°— R and
g: R* — R yicld a single vector-valued function F: _R2 — R® defined by F(x, y)=
[flx,») g(x, y)]". Thatis, if x =[x y]" andu=[u v]”. then the scalar components of
u= F(x)areu= f(x, y)andv=g(x, y). Then the problem of solving simultaneously
the two scalar equations in (21) amounts to solving the single vector equation

Just as the two scalar-valued differentiable functions f and g “combine™ in a
single vector-valued function F, their linear approximation formulas

f(x) =~ f(a)+ f'(a)(x —a),
g(x) = g(a) + g'(a)(x — a)
(from Eq. (14) with x = a and h = x — a) combine in a single vector formula. That

is, because f'(a)= [D, f(a) D f(a)] and g'(a)= [Djg(a) Drg(a)], the two linear
approximation formulas may be written as the single formula

{_;"(x)] [f{a}] [D. fla) D> f(a)
2z + X — a).
g(x) gla) Dyg@) Dog(a)

Because Fi(x)= [f(x) g(x).]?, this observation provides the linear approximation
formula

F(x)=~ F(a) 4+ F'(a)(x —a) (23)
for the function F: R* — R?, where

_[Dif@) Dzf(a)

F'(a)=
®=|pg@ Daga

(24)
is the 2 x 2 derivative matrix of the function & of two variables; its elements are the
partial derivatives of the two component functions f and g of F.

We now use the vector linear approximation formula in (23) to derive Newton’s
method for the solution of the vector equation F(x) = 0. Suppose that r is a solution
of this equation and that xp is an initial guess at the value of r. Substituting x = r and
x = X in (23) then yields the approximation

F(I.') =z F(X[]} + F’(XH)(I‘ ) K[]).

Because F(r) =0, this means that F'(xp)(r — Xp) = — F(xg). If the 2 x 2 matrix F'(x)
is invertible, then we can multiply by its inverse matrix F'(xp)~! to obtain the pre-
sumably improved estimate

r &~ xg— F(x0)" F(xg)
of the solution r. Thus having begun with the initial guess X, we have derived the
new approximation x| given by

xX; =xg — F'(x0) " F(xo).
In exactly the same way, having reached an nth approximation x,, to the actual solution
r, we thereby derive the next approximation

Xii1 =Xp — F'(xp) " F(xp). (25)
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THE MULTIVARIABLE CHAIN RULE

14.7]

The single-variable chain rule of Section 3.3 says that the composition fi(x) = f(g(x})
of two differentiable single-variable functions fand g is differentiable, and that its
derivative is given in terms of their derivatives by i'(x) = ['(g(x)) - g"(x). An appro-
priate generalization to vector-valued functions is the multivariable chain rule of this

section.

A function F : R" — R" (that is, [rom R" to R"™) associates with a vector x in
R" avector y = F(x) in R". Each component of the m-vector y is then a function of
the n-vector X, S0 we may write

F)=[F(x) B - F.m]

where Fy, F..... F,, are the component functions of /. Each component function
F; i R" — R associates a real number y; = F;i(x) with the n-vector x, and we may
write Fi(x) = Fi(x). xa, ..., v,,) in view of the correspondence between n-vectors and
n-tuples. Thus the function F : R" — R" expresscs cach of the 1 dependent variables
Vi, V2, - ... Vi as a function y; = Fi(x, Xa, ..., x,) of the n independent variables
T t,. We may write F: R — R} to signify the usc of x-coordinates in the do-
main and y-coordinates in the range of the [unction F. but other notation for the inde-
pendent and dependent variables may be more appropriate in a particular situation.

The notation F @ R" — R" means that the domain of F lies in R" and that
its range lies in R™. But F need not be defined everywhere in R". For instance, the
function F : R® — R described by F(x, y, z)=.xy/z is not defined at points of the
xy-plane at which z=0.

EXAMPLE 1 Recall the familiar equations
x=rcosfl, y=rsinf

that express the rectangular coordinates (x, v) of a point in the plane in terms of
its polar coordinates 1 and 0. These equations define the component functions x=
Ti(r,8) and y = Ta(r, 6) ol the function T : Rfr_, — R_“:‘_ that 1s defined by T(1. )=
(rcosd, rsinf). Note that T has independent variables r, # and dependent vari-
ables x, y. &

REMARK The function 7" : R®> — R’ of Example | is sometimes called the polar
coordinates transformation of the plane, The words function, mapping, and transfor-
mation are synonyms whose usage depends somewhat on the context—the latter two
terms appear less frequently in single-variable situations than in multivariable ones,
and the term “transformation” is often (but not always) used when m=n.

The following definition of differentiability reads essentially the same as the
definition given in Section 14.6 for the special case of real-valued functions. W
require that the function F be defined at and near the point a, meaning that itis
defined for all x in some neighborhood |x — a| < § of the point a.

DEFINITION Differentiable Function

Suppose that the function F : R" — R is defined at and ncar the pointa in R".
Then F is said to be differentiable at a provided that there exists a constant i
matrix C such that

. Fla+h) — F(a)y—Ch
lim =0. (1
h—1) |h|
In effect, this definition means that £ is differentiable at a if there exists a lincar
function L(h) = Chof the n-vector h that approximates the increment /(a4 h)—Fal
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The Multivariable Chain Rule SECTION 14.7 943

so closely that (when h is small) the error is small even in comparison with [h]. In
short, differentiable functions are those that have “good™ linear approximations.

In Problem 62 we ask you to verify that if F is differentiable at a. then the
component functions F, Fr, ..., £, of F all have first-ovder partial derivatives at a,
and that the matrix C in Eq. (1) is then given by

D Ry D2y - DFia)

DiF@)  Dyfaa) - DyFaa)
| | | )
D] E:r{ﬂ) Dg}‘;,,(_a) e Du F,,,{ﬂ}

Note that the elements of the ith row of C are the n first-order partial derivatives of
the ith component function F; of . And (justasin the case 1= 1 discussed in Section
14.6) the function F is differentiable whenever all the partial derivatives appearing
in Eq. (2) exist and are continuous—in which case F is said to be continuously
differentiable. Thus:

= Il Fis continuously differentiable, then £ is differentiable.
o I[ [ is differentiable, then all its first-order partial derivatives exist,

Because the condition in Eq. (1) can be difficult to verify directly. the ordinary way of
verilying differentiability ol a multivariable function F is to calculate all first-order
partial derivatives ol its component functions, observe that they are all continuous,
and hence conclude that the function F is differentiable because it is continuously
differentiable.

The matrix in Eq. (2) is known as the derivative matrix of F at a.

DEFINITION Derivative Matrix
The derivative matrix (sometimes called the Jacobian matrix) of the function
F: R" — R"is the m x n matrix defined by

oy

i : arF;
F'x)=[D; i) =| 57—
wherever the indicated partial derivatives all exist.

Observe carefully the order of the subscripts in Eq. (3). The ith row of the
derivative matrix consists of the partial derivatives of the ith component function

F; with respect to the i different independent variables xi. xo. ... .. vy, (lirst row, first
function; second row, second function: ...). The jth colunmr of F'(x) consists of the
partial derivatives of the m component functions Fy. fa, ... [, with respect Lo the

jth independent variable x; (first column, first variable: second column, second

variable; .. ).

EXAMPLE 2 The derivative matrix of the polar coordinate transformation 7'(r, #) =
(recosf, rsin®) is a 2 x 2 matrix with the partial derivatives of Tj(r.#)=r cos
in its first row and the partial derivatives of T3(r.¢)=rsiné¢ in its second row.
Therelore

an a7
i T cosf!l —rsind
Tr, @) = i (” =™ ,
a7 a1 sinf I cost
o i

All four partial derivatives we sce here are obviously continuous everywhere. so we
g el o - . . . . .y

conclude that 7': R — R- is continuously diflerentiable and. therelore, differen-

tiable everywhere. *
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The General Chain Rule
Given functions & : R" — R” and F: R” — R" their composition

H=FoG:R' — R"

is defined by H{x) = F(G(x)) whenever (G(x) lies in the domain of F.

THEOREM 1 The Chain Rule
If G: R"— R?” is differentiable at a and F: R” — R"™ is differentiable at G(a),
then the composition I{ = F o (;: R" — R isdifferentiable at a, and its derivative
matrix is given by

H'(a)= F'(G(a))G'(a). (4)

Note that the m x n product matrix H'(a)=(F o (G)'(a) on the right is defined
because F'(G(a)) is an m x p matrix and ('(a) 1s a p x 1 matrix.

Observe that Eq. (4) is precisely the matrix analog of the single-variable scalar
chain rule /'(v) = ["(g(x)) - g'(x) where 1 = f o g. At the conclusion of this section
we outline a multivariable proof of Theorem 1 that generalizes the proof of the
single-variable chain rule found in Section 4.2.

To see what the matrix product in Eq. (4) means, lets write cach matrix in terms
of partial derivatives of component [unctions (omitling arguments):

_D|F| D,-FI et DI,,F|— ‘D|(_;] Dr(j'[ Drr(;lﬂ
[Df'Hf]: D]F; ll{);}_‘r e D;;F} DIGJ' DIG* DHGl
_D! Ly o DF, - Dp F;r:ﬂ _DI Gln iz D; G!; 2T D”GP_

Because the i jth element of {'(a) is the product of the ith row of F'(G(a)) and the
Jth column of GG'(a), we see that it
» ]

DjHia)= Y D, F;(G(a)) - D;G.(a) (5

=l i

foreachi (1 =i =m)andeach j (1 Z;=n). i
To make this intricate-looking formula easier to remember, let’s write w = F(x) £

and x = G(t), so that the notation

G F E:
Ry Ry 5 Ry i
' 3

A

indicates domains and ranges. Thus F gives each of the dependent variables w. |
Wa, ..., wy in terms of the intermediate variables x, x5, ..., x,. and G gives cach %
of these intermediate variables in terms of the independent variables ¢, 65, ... .1,
Then, using partial differential rather than operator notation, Eq. (5) takes the more
memorable form

Wi o= dw dx,  dw; dxp ow; dx [ ) dw;  dx, ok
= = o B . — Gk o ,
ot pme x, dxp  di dxa i dx, it

for cachi (1 27 =m)andeach j (1 £ j = n). In this formula for the partial derivative
of the dependent variable w; with respect to the independent variable ;. we sec |
one term for each of the p intermediate variables x), v, ..., x,. Morcover, cach
ol these terms exhibits a characteristic “chain rule pattern™—as though the dx, on \ FIGUF
the first factor dw;/dx, somchow cancelled the dx, in the second factor dx, /i, | a cylir
meaninglessly leaving dw; /0. . (Exam




