The O and o notation

Let f and g be functions of z.

1.

Big O. We define f =0(g) to mean f/g is bounded, some limit

process for x being given. For example if that process is = — +o0
then f =0O(g) means that for some bound ¢ and lower limit x,.
say, |f(x)/g(z)| < ¢ forall z >z, O saves us from specifying ¢
and z,. each time. Mostly g¢(z) will be a power of z, including
2% =1. “Big O” is short for “Order” which in this context means size,
so f=0(g) means, roughly, that f is not bigger than g.

Examples (a) 2P =0(27) as ¢ — 400 if p <g, but not as x — 0+
(we need p > ¢ then).

(b) f(z) =O(1) means f is bounded (for the given limit process).
Similarly, ¢f =O(1) for any constant c.

(¢) (x—1)"'=0(1) as # — +oo (take ¢c=1 and z,=2).

In fact we shall see below that (z —1)7! =0(z™1).

Note that (z —1)7! is not bounded for all z (take z =1).

. Small 0. We define f =o(g) to mean f/g — 0, again for some

given limit process in x. For example if the process is * — +oo then
f =o(g) means that for each € > 0 thereis x. sothat |f(x)/g(z)| <e
whenever x > x.. “Small 0” means “of smaller order”, and saves us
from specifying ¢ and z. each time.

Examples (a) 2P =o(z?) as x — +oo if p < g but notif p=gq
(then we have O(x9)). We need p > q if z — 0+.

(b) f(z) =0(1) means f(z) — 0 (for the given limit process).
Similarly, ¢f =o(1) for any constant c.

Note that f(z) =o(1) implies f(z) =0(1). (Why?)

(c) (z—1)"1=0(1) as z — +o0

but not as x — 0 (or 0— or 0+) but then we do have O(1)) instead.
(d) If f is continuous at zg, say, then f(z) — f(zo), so we have

f(@) = f(x0) =0(1), as & — wo.



3. Calculus. O and o obey sum rules

f1=0(g9) and f,=0(g) imply fi+ f>=0(g)
fi=o(g) and fy=o(g) imply fi+ f2=o0(g)

and product rules

f1=0(g91) and f, =0(g2) imply fif2 =0(g192)
fi=o(g1) and fy=0(g2) imply fifs=0(g192).

Examples (a) If f(z) = O(2?) then 27 9f(z) = O(z=?)O(2?) = O(2P79)
as ¢ — 04. Similarly with o. Thus we can take factors out of equations
like f(z) = o(2?). The case p = q gives x 7P f(z) = o(1), i.e.,, 2 Pf(x) —
0.

(b) Let us improve on 1(c). We have
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By 1(c) and the sum rule, z(x —1)7' = O(1)+ O(1) = O(1), as
x — +00. Now the product rule allows us to factor out x to give
(x —1)7' = O(z™"), as promised earlier.

Differentiation is more tricky, and if for example f(z) = z?sin(1/x)
then f(z) = o(z) but f'(z) # o(1) as x — 0.

Integration. Again some caution is needed but the following result will
be enough for our purposes. Suppose that f =o(g), and that g is of
one sign, in a (perhaps one-sided) neighbourhood N of 2. Then

(d)  Jo f =o([; g)as x — xo within N.

An example of this is given in the next section. A similar result holds
if o is replaced by O.
A proof of (d), which uses a bit of Analysis, is as follows.

For simplicity suppose that ¢ > 0,  —xy > 0 in N. For each ¢ > 0
there is x. so that |f(x)| < eg(z) whenever z lies between zy and ..
Integrating, we obtain
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Since £ was arbitrarily small, this completes the proof.



4. Taylor approximations (a) The simplest of these is the zeroth order
(constant) approximation f(x) = f(zg)4o(1) which holds as in 1(d) if
f is continuous at zy, the limit process (here and below) being x — .

(b) If f is differentiable at zq then %f(ﬁm) = f'(xg)+o(1), i.e.,

Z

f(x) = f(xo) + f'(x0)(x — m0)+o0(x — T0)

by the product rule in 3.

(c) If f is continuously differentiable in a neighbourhood of ¢, then by
the mean value theorem, f(x) = f(x¢) + f'(21)(z — x¢) where x; lies in
the interval between z and xy. Since f’ is continuous we obtain, as in
(a), f'(x1) = f'(x0)+0(1) as = (hence x1) — x, so substitution gives
another proof of f(z) = f(zo) + f'(xo)(x — xo)+0(x — o).

(d) If f is twice differentiable at o, (perhaps one sidedly), then as in
(b), f'(x) = f'(xo) + f"(w0) (2 — xo)+o0(x — xo), L€,
f'(@) = f'(wo) — f"(0)(z — x0) = oz — 20).
Integrating and using 3(d) we obtain
(@) = f(xo) = f'(o)(x = z0) = 5" (w0)(x — 20)* = 0w — xp)?,
ie.,
f(@) = f(zo) + f'(zo)(x — z0) + 5" (z0)(x — z0)*+0(x — 0)*.

(e) In general, if f is n times differentiable at xg, (perhaps one sidedly),
then similar reasoning gives

flx) = flxo) + f'(wo)(x — o) + ... 4+ 5 f " (20) (x — mo)"+0(x — )"



