The O and o notation

Let f and g be functions of x.

1. Big O. We define $f=\mathrm{O}(g)$ to mean f / g is bounded, some limit
process for x being given. For example if that process is $x \rightarrow+\infty$ then $f=\mathrm{O}(g)$ means that for some bound c and lower limit x_{c} say, $|f(x) / g(x)| \leq c$ for all $x \geq x_{c}$. O saves us from specifying c and x_{c} each time. Mostly $g(x)$ will be a power of x, including $x^{0}=1$. "Big O" is short for "Order" which in this context means size, so $f=\mathrm{O}(g)$ means, roughly, that f is not bigger than g.
Examples (a) $x^{p}=\mathrm{O}\left(x^{q}\right)$ as $x \rightarrow+\infty$ if $p \leq q$, but not as $x \rightarrow 0+$ (we need $p \geq q$ then).
(b) $f(x)=\mathrm{O}(1)$ means f is bounded (for the given limit process).

Similarly, $c f=\mathrm{O}(1)$ for any constant c.
(c) $(x-1)^{-1}=\mathrm{O}(1)$ as $x \rightarrow+\infty$ (take $c=1$ and $x_{c}=2$).

In fact we shall see below that $(x-1)^{-1}=\mathrm{O}\left(x^{-1}\right)$.
Note that $(x-1)^{-1}$ is not bounded for all x (take $x=1$).
2. Small o. We define $f=\mathrm{o}(g)$ to mean $f / g \rightarrow 0$, again for some given limit process in x. For example if the process is $x \rightarrow+\infty$ then $f=\mathrm{o}(g)$ means that for each $\varepsilon>0$ there is x_{ε} so that $|f(x) / g(x)|<\varepsilon$ whenever $x \geq x_{\varepsilon}$. "Small o" means "of smaller order", and saves us from specifying ε and x_{ε} each time.
Examples (a) $x^{p}=\mathrm{o}\left(x^{q}\right)$ as $x \rightarrow+\infty$ if $p<q$ but not if $p=q$ (then we have $\mathrm{O}\left(x^{q}\right)$). We need $p>q$ if $x \rightarrow 0+$.
(b) $f(x)=\mathrm{o}(1)$ means $f(x) \rightarrow 0$ (for the given limit process).

Similarly, $c f=0(1)$ for any constant c.
Note that $f(x)=\mathrm{o}(1)$ implies $f(x)=\mathrm{O}(1)$. (Why?)
(c) $(x-1)^{-1}=\mathrm{o}(1)$ as $x \rightarrow+\infty$
but not as $x \rightarrow 0$ (or $0-$ or $0+$) but then we do have $\mathrm{O}(1)$) instead.
(d) If f is continuous at x_{0}, say, then $f(x) \rightarrow f\left(x_{0}\right)$, so we have

$$
f(x)-f\left(x_{0}\right)=\mathrm{o}(1), \text { as } x \rightarrow x_{0} .
$$

3. Calculus. O and o obey sum rules

$$
\begin{array}{ccccc}
f_{1}=\mathrm{O}(g) & \text { and } & f_{2}=\mathrm{O}(g) & \text { imply } & f_{1}+f_{2}=\mathrm{O}(g) \\
f_{1}=\mathrm{o}(g) & \text { and } & f_{2}=\mathrm{o}(g) & \text { imply } & f_{1}+f_{2}=\mathrm{o}(g)
\end{array}
$$

and product rules

$$
\begin{array}{ccccc}
f_{1}=\mathrm{O}\left(g_{1}\right) & \text { and } & f_{2}=\mathrm{O}\left(g_{2}\right) & \text { imply } & f_{1} f_{2}=\mathrm{O}\left(g_{1} g_{2}\right) \\
f_{1}=\mathrm{o}\left(g_{1}\right) & \text { and } & f_{2}=\mathrm{o}\left(g_{2}\right) & \text { imply } & f_{1} f_{2}=\mathrm{o}\left(g_{1} g_{2}\right) .
\end{array}
$$

Examples (a) If $f(x)=\mathrm{O}\left(x^{p}\right)$ then $x^{-q} f(x)=\mathrm{O}\left(x^{-q}\right) \mathrm{O}\left(x^{p}\right)=\mathrm{O}\left(x^{p-q}\right)$ as $x \rightarrow 0+$. Similarly with o. Thus we can take factors out of equations like $f(x)=\mathrm{o}\left(x^{p}\right)$. The case $p=q$ gives $x^{-p} f(x)=\mathrm{o}(1)$, i.e., $x^{-p} f(x) \rightarrow$ 0.
(b) Let us improve on $1(c)$. We have

$$
\frac{x}{x-1}=\frac{x-1}{x-1}+\frac{1}{x-1} .
$$

By $1(\mathrm{c})$ and the sum rule, $x(x-1)^{-1}=\mathrm{O}(1)+\mathrm{O}(1)=\mathrm{O}(1)$, as $x \rightarrow+\infty$. Now the product rule allows us to factor out x to give $(x-1)^{-1}=\mathrm{O}\left(x^{-1}\right)$, as promised earlier.
Differentiation is more tricky, and if for example $f(x)=x^{2} \sin (1 / x)$ then $f(x)=\mathrm{o}(x)$ but $f^{\prime}(x) \neq \mathrm{o}(1)$ as $x \rightarrow 0$.
Integration. Again some caution is needed but the following result will be enough for our purposes. Suppose that $f=\mathrm{o}(g)$, and that g is of one sign, in a (perhaps one-sided) neighbourhood N of x_{0}. Then (d) $\quad \int_{x_{0}}^{x} f=\mathrm{o}\left(\int_{x_{0}}^{x} g\right)$ as $x \rightarrow x_{0}$ within N.

An example of this is given in the next section. A similar result holds if o is replaced by O .
A proof of (d), which uses a bit of Analysis, is as follows.
For simplicity suppose that $g>0, x-x_{0}>0$ in N. For each $\varepsilon>0$ there is x_{ε} so that $|f(x)|<\varepsilon g(x)$ whenever x lies between x_{0} and x_{ε}. Integrating, we obtain

$$
\left|\int_{x_{0}}^{x} f\right| \leq \int_{x_{0}}^{x}|f|<\varepsilon \int_{x_{0}}^{x} g .
$$

Since ε was arbitrarily small, this completes the proof.
4. Taylor approximations (a) The simplest of these is the zeroth order (constant) approximation $f(x)=f\left(x_{0}\right)+o(1)$ which holds as in $1(\mathrm{~d})$ if f is continuous at x_{0}, the limit process (here and below) being $x \rightarrow x_{0}$.
(b) If f is differentiable at x_{0} then $\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=f^{\prime}\left(x_{0}\right)+\mathrm{o}(1)$, i.e.,

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\mathrm{o}\left(x-x_{0}\right)
$$

by the product rule in 3 .
(c) If f is continuously differentiable in a neighbourhood of x_{0}, then by the mean value theorem, $f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{1}\right)\left(x-x_{0}\right)$ where x_{1} lies in the interval between x and x_{0}. Since f^{\prime} is continuous we obtain, as in (a), $f^{\prime}\left(x_{1}\right)=f^{\prime}\left(x_{0}\right)+\mathrm{o}(1)$ as x (hence $\left.x_{1}\right) \rightarrow x_{0}$, so substitution gives another proof of $f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\mathrm{o}\left(x-x_{0}\right)$.
(d) If f is twice differentiable at x_{0}, (perhaps one sidedly), then as in (b), $f^{\prime}(x)=f^{\prime}\left(x_{0}\right)+f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)+\mathrm{o}\left(x-x_{0}\right)$, i.e.,

$$
f^{\prime}(x)-f^{\prime}\left(x_{0}\right)-f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)=\mathrm{o}\left(x-x_{0}\right) .
$$

Integrating and using $3(\mathrm{~d})$ we obtain

$$
f(x)-f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)-\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}=\mathrm{o}\left(x-x_{0}\right)^{2},
$$

i.e.,

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\mathrm{o}\left(x-x_{0}\right)^{2} .
$$

(e) In general, if f is n times differentiable at x_{0}, (perhaps one sidedly), then similar reasoning gives

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\ldots+\frac{1}{n!} f^{(n)}\left(x_{0}\right)\left(x-x_{0}\right)^{n}+\mathrm{o}\left(x-x_{0}\right)^{n} .
$$

