<u>The O and o notation</u>

Let f and g be functions of x.

1. Big O. We define f = O(g) to mean f/g is bounded, some limit

process for x being given. For example if that process is $x \to +\infty$ then f = O(g) means that for some bound c and lower limit x_c say, $|f(x)/g(x)| \leq c$ for all $x \geq x_c$. O saves us from specifying cand x_c each time. Mostly g(x) will be a power of x, including $x^0 = 1$. "Big O" is short for "Order" which in this context means size, so f = O(g) means, roughly, that f is not bigger than g.

Examples (a) $x^p = O(x^q)$ as $x \to +\infty$ if $p \le q$, but not as $x \to 0+$ (we need $p \ge q$ then). (b) f(x) = O(1) means f is bounded (for the given limit process). Similarly, cf = O(1) for any constant c. (c) $(x-1)^{-1} = O(1)$ as $x \to +\infty$ (take c = 1 and $x_c = 2$). In fact we shall see below that $(x-1)^{-1} = O(x^{-1})$. Note that $(x-1)^{-1}$ is not bounded for all x (take x = 1).

2. <u>Small o.</u> We define f = o(g) to mean $f/g \to 0$, again for some given limit process in x. For example if the process is $x \to +\infty$ then f = o(g) means that for each $\varepsilon > 0$ there is x_{ε} so that $|f(x)/g(x)| < \varepsilon$ whenever $x \ge x_{\varepsilon}$. "Small o" means "of smaller order", and saves us from specifying ε and x_{ε} each time.

Examples (a) $x^p = o(x^q)$ as $x \to +\infty$ if p < q but not if p = q(then we have $O(x^q)$). We need p > q if $x \to 0+$. (b) f(x) = o(1) means $f(x) \to 0$ (for the given limit process). Similarly, cf = o(1) for any constant c. Note that f(x) = o(1) implies f(x) = O(1). (Why?) (c) $(x - 1)^{-1} = o(1)$ as $x \to +\infty$ but not as $x \to 0$ (or 0 - or 0+) but then we do have O(1)) instead. (d) If f is continuous at x_0 , say, then $f(x) \to f(x_0)$, so we have

$$f(x) - f(x_0) = o(1)$$
, as $x \to x_0$.

3. <u>Calculus</u>. O and o obey sum rules

$$f_1 = O(g)$$
 and $f_2 = O(g)$ imply $f_1 + f_2 = O(g)$
 $f_1 = o(g)$ and $f_2 = o(g)$ imply $f_1 + f_2 = o(g)$

and product rules

$$f_1 = O(g_1)$$
 and $f_2 = O(g_2)$ imply $f_1 f_2 = O(g_1 g_2)$
 $f_1 = o(g_1)$ and $f_2 = o(g_2)$ imply $f_1 f_2 = o(g_1 g_2)$.

Examples (a) If $f(x) = O(x^p)$ then $x^{-q}f(x) = O(x^{-q})O(x^p) = O(x^{p-q})$ as $x \to 0+$. Similarly with o. Thus we can take factors out of equations like $f(x) = o(x^p)$. The case p = q gives $x^{-p}f(x) = o(1)$, i.e., $x^{-p}f(x) \to 0$.

(b) Let us improve on 1(c). We have

$$\frac{x}{x-1} = \frac{x-1}{x-1} + \frac{1}{x-1}.$$

By 1(c) and the sum rule, $x(x-1)^{-1} = O(1) + O(1) = O(1)$, as $x \to +\infty$. Now the product rule allows us to factor out x to give $(x-1)^{-1} = O(x^{-1})$, as promised earlier.

<u>Differentiation</u> is more tricky, and if for example $f(x) = x^2 \sin(1/x)$ then f(x) = o(x) but $f'(x) \neq o(1)$ as $x \to 0$.

Integration. Again some caution is needed but the following result will be enough for our purposes. Suppose that f = o(g), and that g is of one sign, in a (perhaps one-sided) neighbourhood N of x_0 . Then (d) $\int_{x_0}^x f = o(\int_{x_0}^x g)$ as $x \to x_0$ within N.

An example of this is given in the next section. A similar result holds if o is replaced by O.

A proof of (d), which uses a bit of Analysis, is as follows.

For simplicity suppose that g > 0, $x - x_0 > 0$ in N. For each $\varepsilon > 0$ there is x_{ε} so that $|f(x)| < \varepsilon g(x)$ whenever x lies between x_0 and x_{ε} . Integrating, we obtain

$$\left|\int_{x_0}^x f\right| \le \int_{x_0}^x |f| < \varepsilon \int_{x_0}^x g.$$

Since ε was arbitrarily small, this completes the proof.

4. Taylor approximations (a) The simplest of these is the zeroth order $\overline{(\text{constant})}$ approximation $f(x) = f(x_0) + o(1)$ which holds as in 1(d) if f is continuous at x_0 , the limit process (here and below) being $x \to x_0$.

(b) If f is differentiable at x_0 then $\frac{f(x)-f(x_0)}{x-x_0} = f'(x_0) + o(1)$, i.e.,

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0)$$

by the product rule in 3.

(c) If f is continuously differentiable in a neighbourhood of x_0 , then by the mean value theorem, $f(x) = f(x_0) + f'(x_1)(x - x_0)$ where x_1 lies in the interval between x and x_0 . Since f' is continuous we obtain, as in (a), $f'(x_1) = f'(x_0) + o(1)$ as x (hence $x_1) \to x_0$, so substitution gives another proof of $f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0)$.

(d) If f is twice differentiable at x_0 , (perhaps one sidedly), then as in (b), $f'(x) = f'(x_0) + f''(x_0)(x - x_0) + o(x - x_0)$, i.e.,

$$f'(x) - f'(x_0) - f''(x_0)(x - x_0) = o(x - x_0).$$

Integrating and using 3(d) we obtain

$$f(x) - f(x_0) - f'(x_0)(x - x_0) - \frac{1}{2}f''(x_0)(x - x_0)^2 = o(x - x_0)^2,$$

i.e.,

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + o(x - x_0)^2.$$

(e) In general, if f is n times differentiable at x_0 , (perhaps one sidedly), then similar reasoning gives

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \ldots + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n + o(x - x_0)^n$$