
The O and o notation

Let f and g be functions of x.

1. Big O. We define f =O(g) to mean f/g is bounded, some limit

process for x being given. For example if that process is x → +∞
then f =O(g) means that for some bound c and lower limit xc

say, |f(x)/g(x)| ≤ c for all x ≥ xc. O saves us from specifying c
and xc each time. Mostly g(x) will be a power of x, including
x0 = 1. “Big O” is short for “Order” which in this context means size,
so f =O(g) means, roughly, that f is not bigger than g.

Examples (a) xp =O(xq) as x→ +∞ if p ≤ q, but not as x→ 0+
(we need p ≥ q then).
(b) f(x) =O(1) means f is bounded (for the given limit process).
Similarly, cf =O(1) for any constant c.
(c) (x− 1)−1 =O(1) as x→ +∞ (take c = 1 and xc = 2).
In fact we shall see below that (x− 1)−1 =O(x−1).
Note that (x− 1)−1 is not bounded for all x (take x = 1).

2. Small o. We define f =o(g) to mean f/g → 0, again for some
given limit process in x. For example if the process is x→ +∞ then
f =o(g) means that for each ε > 0 there is xε so that |f(x)/g(x)| < ε
whenever x ≥ xε. “Small o” means “of smaller order”, and saves us
from specifying ε and xε each time.

Examples (a) xp =o(xq) as x → +∞ if p < q but not if p = q
(then we have O(xq)). We need p > q if x→ 0+.
(b) f(x) =o(1) means f(x)→ 0 (for the given limit process).
Similarly, cf =o(1) for any constant c.
Note that f(x) =o(1) implies f(x) =O(1). (Why?)
(c) (x− 1)−1 =o(1) as x→ +∞
but not as x→ 0 (or 0− or 0+) but then we do have O(1)) instead.
(d) If f is continuous at x0, say, then f(x)→ f(x0), so we have

f(x)− f(x0) =o(1), as x→ x0.

1



3. Calculus. O and o obey sum rules

f1 =O(g) and f2 =O(g) imply f1 + f2 =O(g)
f1 =o(g) and f2 =o(g) imply f1 + f2 =o(g)

and product rules

f1 =O(g1) and f2 =O(g2) imply f1f2 =O(g1g2)
f1 =o(g1) and f2 =o(g2) imply f1f2 =o(g1g2).

Examples (a) If f(x) = O(xp) then x−qf(x) = O(x−q)O(xp) = O(xp−q)
as x→ 0+. Similarly with o. Thus we can take factors out of equations
like f(x) = o(xp). The case p = q gives x−pf(x) = o(1), i.e., x−pf(x)→
0.
(b) Let us improve on 1(c). We have

x

x− 1
=

x− 1

x− 1
+

1

x− 1
.

By 1(c) and the sum rule, x(x− 1)−1 = O(1)+ O(1) = O(1), as
x→ +∞. Now the product rule allows us to factor out x to give
(x− 1)−1 = O(x−1), as promised earlier.

Differentiation is more tricky, and if for example f(x) = x2 sin(1/x)
then f(x) = o(x) but f ′(x) 6= o(1) as x→ 0.

Integration. Again some caution is needed but the following result will
be enough for our purposes. Suppose that f =o(g), and that g is of
one sign, in a (perhaps one-sided) neighbourhood N of x0. Then
(d)

∫ x
x0

f = o(
∫ x
x0

g) as x→ x0 within N .

An example of this is given in the next section. A similar result holds
if o is replaced by O.
A proof of (d), which uses a bit of Analysis, is as follows.

For simplicity suppose that g > 0, x − x0 > 0 in N . For each ε > 0
there is xε so that |f(x)| < εg(x) whenever x lies between x0 and xε.
Integrating, we obtain

|
∫ x

x0

f | ≤
∫ x

x0

|f | < ε
∫ x

x0

g.

Since ε was arbitrarily small, this completes the proof.
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4. Taylor approximations (a) The simplest of these is the zeroth order
(constant) approximation f(x) = f(x0)+o(1) which holds as in 1(d) if
f is continuous at x0, the limit process (here and below) being x→ x0.

(b) If f is differentiable at x0 then f(x)−f(x0)
x−x0

= f ′(x0)+o(1), i.e.,

f(x) = f(x0) + f ′(x0)(x− x0)+o(x− x0)

by the product rule in 3.

(c) If f is continuously differentiable in a neighbourhood of x0, then by
the mean value theorem, f(x) = f(x0) + f ′(x1)(x−x0) where x1 lies in
the interval between x and x0. Since f ′ is continuous we obtain, as in
(a), f ′(x1) = f ′(x0)+o(1) as x (hence x1) → x0, so substitution gives
another proof of f(x) = f(x0) + f ′(x0)(x− x0)+o(x− x0).

(d) If f is twice differentiable at x0, (perhaps one sidedly), then as in
(b), f ′(x) = f ′(x0) + f ′′(x0)(x− x0)+o(x− x0), i.e.,

f ′(x)− f ′(x0)− f ′′(x0)(x− x0) = o(x− x0).

Integrating and using 3(d) we obtain

f(x)− f(x0)− f ′(x0)(x− x0)− 1
2
f ′′(x0)(x− x0)

2 = o(x− x0)
2,

i.e.,

f(x) = f(x0) + f ′(x0)(x− x0) + 1
2
f ′′(x0)(x− x0)

2+o(x− x0)
2.

(e) In general, if f is n times differentiable at x0, (perhaps one sidedly),
then similar reasoning gives

f(x) = f(x0) + f ′(x0)(x− x0) + . . . + 1
n!

f (n)(x0)(x− x0)
n+o(x− x0)

n.
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