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Explicitly,
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(The number 7, = 1.618 is known as the golden section ratio and was con-
sidered by carly Greeks Lo be the most aesthetic value for the ratio of two
adjucent sides of a rectangle.)

For large N the first term on the right side of (4) dominates the second,
and hence
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It follows from (1) that the interval of uncertainty at any point in the process
has width
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Therefore, we conclude that, with respect to the width of the uncertainty
interval, the search by golden section converges linearly (see Section 6.6)
to the overall minimum of the function f with convergence ratio l/f, =
0.618.

7.2 LINE SEARCH BY CURVE FITTING

The Fibonacci search method has a certain amount of theoretical appeal,
since it assumes only that the function being searched is unimodal and with
respect to this broad class of functions the method is, in some sense, optimal,
In most problems, however, it can be safely assumed that the function being
searched, as well as being unimodal, possesses a certain degree of smooth-
ness, and one might, therefore, expect that more efficient search techniques
cxploiting this smoothness can be devised; und indeed they can. ‘T'echniques
of this nature arc usually based on curve litting procedures where a smooth
curve is passed through the previously measured points in order to determine
an estimate of the minimum point. A variety of such techniques can be
devised depending on whether or not derivatives of the function as well as
the values can be measured, how many previous points are used to determine
the fit, and the criterion used to determine the fit. In this section a number
of possibilities are outlined and analyzed. All of them have orders of con-
vergence greater than unity,
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Newton’s Method

Suppose that the function f of a single variable x is to be minimized, and
suppose that at a point x, where a measurement is made it is possible to
evaluate the three numbers f(xi), f*(xe), fS"(xx). 1L is then possible to con-
struct a quadratic function ¢ which at x; agrees with f up to second deriv-
atives, that is

g(x) = flx) + £/l — x0) + ol = xob (7)
We may then calculate an estimate x; , ; of the minimum point of f by finding
the point where the derivative of ¢ vanishes. Thus setting
0 = q'leer) = ['0) + [ — ),
we find

f(x0)
Xpw1 = X — __| . Axw
! Ixs)
This process, which is illustrated in Fig. 7.3, can then be repeated at vy,
We note immediately that the new point x;.. resulting from Newlon's
method does not depend on the value f(x;). The method can more simply
be viewed as a technique for iteratively solving equations of the form

glx) = 0,

where, when applied to minimization, we put g(x) = f'(x). In this notation
Newton's method takes the form

£'(xy)

This form is illustrated in Fig. 7.4.
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Fig. 7.3 Newton's method for minimization
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Fig. 7.4 Newton's method for solving equations

We now show that Newton's method has order two convergence:

Propoesition.  Let the function ¢ have a continnons second dervivative,
and let x% satisfy g(x™) = 0, g"(x%) # 0. Then, provided x, is sufficiently
close 1o X%, the sequence {xifi g generated by Newton's method (9)
converges (o XEwith an order &_ comergence ar feast two.

Proof.  For points € in a region near v* there is a k, such that 2"(E)] < ki
::.,_“;..;:n:::: _.a;@_ vH,.u.,:Ezisna,nr.jH:Er.nz:g,:n

_gly) = gl™)
£'(xe)
= —lelv) — 2™ + gl — x)le' ().

= Xy — o

Xy —

The term in brackets is, by Taylor's theorem, zero to first-order. In fuct,
using the remainder term in a Taylor serics expansion about vz, we obtain

Nz o—dl i

for some ¢ between v* and .vg. Thus in the region near x*,

k
_.: gy s ,__ = % Ap R _u.
We see that if v — x*|ki/2k2 < 1, then v — ©%| < |v — x* and thus

we conclude that if started close enough to the solution, the method will
converge to x* with an order of convergence at least two. [

Method of False Position

Newton's method for minimization is bused on fitting a quadratic on the
basis of information at a single point; by using more points, less information

-
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Fig. 7.5 Fulse position lor minimization
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to fit the quadratic .

¢x) = flxe) + 'l — x) + L) = S . Sl
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which has the same corresponding values. An estimate X%+ can then be
determined by finding the point where the derivative of ¢ vanishes; thus

Xe—1 — Xy

J'—y) - S |

Xeet = X — ['(xy) (10)

(See Fig. 7.5.) Comparing this formula with Newton's method, we see again
that the value f(x;) does not enter; hence, our fit could have been passed
through either f(xi) or f(xi—,). Also the formula can be regarded as an
approximation to Newton's method where the second derivative is replaced
by the difference of two first derivatives.

Again, since this method does not depend on values of f directly, it can
be regarded as a method for solving f'(v) = g(x) = 0. Viewed in this way
the method, which is illustrated in Fig. 7.6, takes the form

Xp— N
_glve) — glvey)

Xad = N = ,H..‘ﬁ._...nw

. (1)

We next investigate the order of convergence of the method of false
posttion and discover that it is order 7, = 1.618, the golden mean.

Proposition.  Let ¢ have a continnous second derivative and suppose x*
is such that g(x*) = 0, g"(x*) # 0. Then Jor xy sufficiently close to x*,
the sequence {x,}i-y generated by the method of false position (11)
converges to x* with order v, = 1.618.
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Fig. 7.6 Fualse position for solving equations

Proof. Introducing the notation

(b) — pla)
3 12
gla, b] b —a (12)
we have
- ST I O AT Y
i M =T Ik £(v) — glxx—1) (13)

gl =1. Xx) — glxe, x¥]
14 £ MG 3

= n.ﬂ.k = H.ﬁu

Further, upon the introduction of the notation

gla, b] — glb, <]
a— ¢ :

egla, b, ¢] =

we may write (13) as

glyk— 1, X, x*]]
glxg -, xx] A

Now, by the mean value theorem with remainder, we have (see Exercise 2)

glxea, il = g'(&) (14)

Xewt = XF = (g~ -1 = 1%

and

gy, X 2% = mhzgt, (15)
where &, and 7, are convex combinations ol x;, x_; and xg, xe_(, x¥,
respectively. Thus

&' ne) e o
= mxlnl.gml (G =Bl =y = 2. (16)
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7.2 Line Search by Curve Fitting

It follows immediately that the process converges if it is started sufficien
close to x*

To determine the order of convergence, we note that for large & I
(16) becomes approximately

Xper = X% = M(xy — x¥)(o-; — x%),
where
ek
M - Wﬁ

Thus defining &, = (xx — x*) we have, in the limit,

Erar = Meer-,. (
Taking the logarithm of this equation we have, with ye = log Mgy,

Yiwr = Yu + Yi-a, (

which is the Fibonacci difference equation discussed in Section 7.1.
solution to this equation will satisfy

Ye+1 — Ty — 0,
Thus

3\»:..%___.

log Meyy — (Mg
&

log Mep — 0 or log ——— — 0,

and hence

Ep 4

[ L
o - MV
Having derived the error formula (17) by direct analysis, it is now a
propriate (o point out a short-cut technique, based on symmetry and oth
considerations, that can sometimes be used in even more complicated s
uations. The :r_: side of error formula (17) must be a polynomial in g, ar
&k—1, since it is derived from approximations based on Taylor’s theorer
Furthermore, it must be second order, since the method reduces to Newton
method when x; = x,_,. Also, it must go to zero if either g, or g4, go
zero, since the method clearly yields ¢, , = 0 in that case. Finally, it mu
be symmetric in &, and e, ;, since the order of points is irrelevant. The on
formula satisfying these requirements is e 4 Mee, .

Cubic Fit

Given the points x._, and x; together with the values flxs -
J'(x—1), fOxa), S'(x), it is possible to fit a cubic equation to the poin
having corresponding values. The next point x; . can then be determinc
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as the relative minimum point of this cubic. This leads to

Sx) + s =
S') = fa-) + 2

) (19)

g = X — (o — Xe-y)

“where

;‘,ﬂ,_..».._u == L_«.n.__._L

X1 — A

Wi =4 80 ) = 3

2 _:m = (_EA.A_.“]L.‘..;,,.h::u.

which is easily implementable for computations.

It can be shown (see Exercise 3) that the order of convergence of the
cubic fit method is 2.0. Thus, although the method is exact for cubic functions
indicating that its order might be three, its order is actually only two.

I

Quadratic Fit

The scheme that is often most useful in line scarching is that of fitting «
quadratic through three given points. This has the advantage of not requiring
any derivative information. Given xy, xa, x5 and corresponding values
) = [ fa) = fa0 Jva) = 3 we construet the quadratic passing
through these points

N | AT .
ao = 2 J [Livi Gy — )" =0

i=1

and determine a new point x, as the point where the derivative of ¢ vanishes.
Thus

Lbaafy + bafs + biafs
2anfi + anfz + afy’

4y

Xy=

where ay; = x; — X, by =
Deline the errors g; = v — x;, i = [, 2, 3,4, The expression for gy
must be a polynomial in &, &2, &1, It must be second order (since it is a
quadratic fit). It must go to zero if any two ol the errors £;, €a, £3 I8 Zero.
(The reader should cheek this.) Finally, it must be symmetric (since the
order of points is relevant). It follows that near a minimum point x* of [,

the errors are related approximately by
gs = Mlgie: + 283 + £183), (22

where M depends on the values of the second and third derivatives ol f at
¥

If we assume that g, — 0 with an order greater than unity, then for large
A the error is governed approximately by

Efqy = __J.._:q___,__; B

Wi r-—“?"!’.ﬁ‘

ey

.
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Letting y, = log Me, this becomes

Yivzr = Yo + Yoo
with characteristic equation

A-A-1=0

The largest root of this equation is A= 1.3 which thus determines the rate
of growth of y; and is the order of convergence of the quadratic fit method.

7.3 GLOBAL CONVERGENCE OF CURVE FITTING

Above, we analyzed the convergence of various curve fitting procedures ir
the neighborhood of the solution point. If, however, any of these procedures
were applied in pure form to search a line for a minimum, there is the
danger—alas, the most likely possibility—that the process would diverge
or wander about meaninglessly. In other words, the process may never gel
close enough to the solution for our detailed local convergence anulysis (¢
be applicable. It is therefore important to artfully combine our knowledge
ol the local behavior with conditions guaranteeing global convergence te
yicld a workable and elfective procedure.

The key to guaranteeing global convergence is the Global Convergence
Theorem of Chapter 6. Application of this theorem in turn hinges on the
construction of a suitable descent function and minor modifications of a pure
curve fitting algorithm. We offer below a particular blend of this kind of
construction and analysis, taking as departure point the quadratic fit pro-
cedure discussed in Section 7.2 above.

Let us assume that the function [ that we wish to minimize is strictly
unimodal and has continuous second partial derivatives. We iniliate our
search procedure by searching along the line until we find three points
X1, X2, v3 with xp < xa < 3 such that f(x;) = f(x2) = f(x3). In other words.
the value at the middle of these three points is less than that at either end.
Such a sequence of points can be determined in a number of wilys—se
Exercise 7.

The main reason for using points having this pattern is that a quadratic
fit to these points will have a minimum (rather than a maximum) and the
minimum point will lie in the interval [x;, vi]. See F g. 7.7. We modity the
pure quadratic [it algorithm so that it always works with points in this basic
three-point patiern,

The point x; is calculated from the quadratic fit in the standard way
and [(vy) is measured. Assuming (as in the figure) that x> < vy < xi, and
accounting for the unimodal nature of f, there are but two possibilities:
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Fig. 7.7 Three-point pattern

In either case a new three-point pattern, X, X, X3, involving x; and two of
the old points, can be determined: In case (1) it is

(X1, X2, X3) = (x2, x4, X3),

while in case (2) it is

= (¥, X2, Ay

We then use this three-point pattern to fit another quadratic and continue.
The pure quadratic fit procedure determines the next point from the current
point and the previous two points. In the modification above, the next point
is determined from the current point and the two out of three last points that
form a three-point pattern with it. This simple modification leads to global
convergence.

To prove convergence, we note that each three-point pattern can be
thought of as defining a vector x in 22, Corresponding to an x = (x;, X, 1)
such that (v, xa2, x3) form a three-point pattern with respect to f, we define
A(x) = (¥, X2, X3) as discussed above. For completeness we must consider
the case where two or more of the x;, i = 1, 2, 3 are equal, since this may
occur. The appropriate definitions are simply limiting cases of the earlier
ones. FFor example, il x; = x2, then (v, 1o, x3) form a three-point pattern
if flxz) = f(x3) and f'(x2) < 0 (which is the limiting case of f(x2) < fCe)).
A quadratic is fit in this case by using the values at the two distinet points
and the derivative at the duplicated point. In case x; = x2 = x3, (X1, X2, X3)
forms a three-point pattern if f'(x2) = 0 and f“(x2) = 0. With these defini-
tions, the map A is well defined. It is also continuous, since curve fitting
depends continuously on the data.

We next define the solution set I' € £ as the points x* = (x¥, x*, 1%
where f'(x*) = 0.

Finally, we let Z(x) = f(x)) + [(x2) + f(x3). Itis easy to see that Z is

7.4 Closedness of Line Search Algorithms :

a descent function for A. After application of A one of (he vall
T(x1), f(xa), flxs) will be replaced by f(xy), and by construction, and 1
assumption that f is unimodal, it will replace a strictly larger value.
course, al x* = (x*, x* v*) we have A(x*) = x* and hence Z(A(x*) = Z(x

Since all points are contained in the initial interval, we have all |
requirements for the Global Convergence Theorem. Thus the process cc
verges to the solution. The order of convergence may not be destroyed
this modification, if near the solution the three-point pattern is always form
from the previous three points. In this case we would still have convergen
of order 1.3. This cannot be guaranteed, however.,

It has often been implicitly suggested, and accepted, that when usi
the quadratic fit technique one should require

Jvesr) < flaw)

S0 as lo guarantee convergenee. If the inequality is not satisfied at soi
cycle, then a special local search is used to find a betler X4 that do
satisfy it. This philosophy amounts to taking Z(x) = f(x3) in our genel
framework and, unfortunately, this is not a descent function even for ul
modal functions, and hence the special local search is likely to be necessa
several times. It is true, of course, that a similar special local search ma
occasionally, be required for the technique we suggest in regions of multip
minima, but it is never required in a unimodal region.

The above construction, based on the pure quadratic fit technique, ¢
be emulated Lo produce effective procedures based on other curve fitti
techniques. For application to smooth functions these techniques seem
be the best available in terms of flexibility to accommodate as much deri

ative information as is available, fast convergence, and a guarantee of glob
convergence.

7.4 CLOSEDNESS OF LINE SEARCH ALGORITHMS

Since searching along a line for a minimum point is a nc_ﬁ_:,:c_.: part
most nonlinear programming algorithms, it is desirable to establish al one
that this procedure is closed: that is, that the end product of the iterati
procedures outlined above, when viewed as a single algorithmic step findin
a minimum along a line, define closed algorithms. That is the objective -
this section.

To initiate a line search with respect to a function f, two vectors mu
be specified: the initial point x and the direction d in which the search s
be made. The result of the search is a new point. Thus we define the searc
algorithm S as a mapping from £2* 1o £,

We assume that the search is to be made over the semi-infinite lir
emanating from x in the dircction d. We also assume. for simplicity, th
the search is not made in vain: that is, we assume that there is & minimui



