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(g) a=3,b=4 (mod 5)
a = 36,b=42 {(mod 49)
a=T,b=8 (mod 11)
a=15b=3 (mod 13)
(h) a=2b=4 (mod 5)
a=14,b= 36 {mod 49)
a= l,E: =10 (mod 11)
a=11,b=7 (mod 13)

20. Suppose m and n are relatively prime positive integers. Show that there
exist integers s and ¢ with s > 0 such that sm + tn = 1. (Hint: It might
be helpful first to consider some specific examples. For instance, can you
find & and ¢, 5 > 0, such that 7s + 22t =17) ‘

The remaining problems are based upon the method for encoding messages
described at the end of this section.

21. Suppose p = 17, ¢ = 23, and s = 5. How would you encode each of the
following “messages”?

(a) [BB] X
(b) HELP
(c) AR
(d) BYE
(e) NOW
22. Suppose p=5, ¢ = T, and s = 5. Decode each of the following encoded

“mesaages.”

(a) [BB] 31
(b) 24
(c) 7
(d) 11
(e) 23

23. Suppose p=17, ¢ =59, and s = 3.

(a) If you receive E = 456, what is the message?
(b) If you receive E = 026, what is the message?
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Chapter 4

Induction and Recursion

4.1 Mathematical Induction

One of the most basic methods of proof is proof by Mathematical Induction,
which is a way to cstablish the truth of a statement about all the natural num-
bers or, sometimes, all sufficiently large integers. Mathematical induction is
important in every area of mathematics. In addition to the examples presented
in this section, other proofs by mathematical induction appear elsewhere in this
book in a variety of different contexts. In the index (see induction), we draw
attention to some theorems whose proofs serve as especially good models of the
technique.

Problem 1, A certain store sells envelopes in packages of five and packages of
twelve and you want to buy n envelopes. Prove that for every n > 45, this store
can fill an order for exactly n envelopes (assuming an unlimited supply of each
type of envelope package).

Solution. If you want to purchase 45 envelopes, you can buy nine packages of
five. If you want to buy 46 envelopes, you can buy three packages of twelve and
two packages of five. If you want to buy 47 envelopes, you can buy one package
of twelve and seven packages of five and if you want 48 envelopes, you would
purchase four packages of twelve.

The obvious difficulty with this way of attacking the problem is that it never
ends. Even supposing that we continued laboriously to answer the question for
n as big as 153, say, could we be sure of a solution for n = 1547 What is needed -
is a general, not an ad hoc way to continue; that is, if it is possible to fill an
order for exactly & envelopes at this store, we would like to be able to deduce
that the store can also fill an order for k + 1 envelopes, Then, knowing that
we can purchase exactly 45 envelopes and knowing that we can always continue,
we could deduce that we can purchase exactly 46 envelopes. Knowing this, and
knowing that we can always continue, we would know that we can purchase
exactly 47 envelopes. And so on.

Suppose—just suppose—that it is possible to buy exactly k envelopes at
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this store, where k > 45. If this purchase requires seven packages of five, then
exchanging these for three packages of twelve fills an order of exactly £+ 1 en-
velopes. On the other hand, if k envelopes are purchased without including seven
packages of five, then the order for & envelopes included at most 30 envelopes
in packages of five and so, since & > 43, at least two packages of twelve must
have been required. Exchanging these for five packages of five then fills exactly
an order for k + 1 envelopes. We conclude that any order for n > 45 envelopes
can be filled exactly. O

This example demonstrates the key ingredients of a proof by mathematical
induction. Asked to prove something about all the integers greater than or equal
to a particular given integer—for instance, that any order of n > 45 envelopes
can be filled with packages of five and twelve—we first establish truth for the first
integer—for example, n = 45—and then show how the truth of the statement

for n = k enables us to deduce truth for n =k + L.

[ 1
|

FIGURE 4.1: An 8 % 8 board.

Problem 2. Chess is a game played on an 8 x8 grid, that is, a board consisting
of eight rows of eight small squares. (See Fig. 4.1.) Suppose our board is defective
in the sense that one of its squares is missing. Given a box of L-shaped trominos
like this, & , each of which covers exactly three squares of a chess board, is it
possible to tile the board without overlapping or going off the board?
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FIGURE 4.2: Three defective boards.
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Solution. We begin our solution by thinking of some easier situations. Fig. 4.2
shows defective 2x2, 4 4, and 88 boards (with the missing square highlighted
in each case). Certainly the 2 x 2 board can be tiled because its shape is exactly
that of a single tromino. A little experimentation would show how to tile the
4 x 4 board. Rather than proceeding case by case, however, we use the idea
suggested by our first example and attempt to understand how a solution for
one particular board can be used to obtain a solution for the next bigger hoard.
Suppose then that we know how to tile any 2% x 25 defective board. How might
we tile a defective board of the next size, 25! % 25¥17 The idea is to realize
that a 21 x 25+ hoard can be divided into four boards, each of size 2% x 2,
as shown in Fig, 4.3.

a% ok

2k

FIGURE 4.3

One of these smaller boards contains the missing square and so is defective.
Now place a tromino at the center so as to cover squares in each of the three
remaining smaller boards. Each of the boards is now defective and so, by as-
sumption, can be tiled with trominos. So we have tiled the larger board! O

The two examples discussed so far made assertions about infinitely many
consecutive integers. In each case, we adopted the following strategy.

e Verify that there is a solution for the smallest integer.
e Show how a solution for one integer leads to a solution for the next.

We now give a formal statement of the principle which has been at work, the
Principle of Mathematical Induction.

4.1 THE PRINCIPLE OF MATHEMATICAL INDUCTION. Given a statement F
concerning the integer n, suppose

1. P is true for some particular integer np;

2. if P is true for some particular integer k > ng, then it is true for the next
integer k4 1.
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Then ¥ is true for all integers n = ny.

In Step 2, the assumption that P is true for some particular integer is known
as the induetion hypothesis.

In our first example, we had to prove that any order of n envelopes, n > 45,
could be filled with packages of five and of twelve: ng was 45 and the induction
hypothesis was the assumption that there was a way to purchase k envelopes
with packages of five and twelve. In the second example, we had to demonstrate
that any defective board of size 2" % 2% n > 1, could be covered in a certain
way; ng was 1 and the induction hypothesis was the assumption that we could
properly cover a 2% x 25 board,

Our next example is suggested by the following pattern. Notice that

i = 1= 12

143 = 4 = 22

1+34+5 = 9 = 32
1434547 = 16 = 4%
143454749 = 25 = 52

The first odd integer is 1%; the sum of the first two odd integers is 2%; the sum
of the first three odd integers is 3% and so on. It appears as if the sum of the
first n odd integers might always be n®. The picture in Fig. 4.4 adds force to
this possibility.

FIGURE 4.4: The sum of the first n odd integers is n”.

Problem 3. Prove that for any integer n > 1, the sum of the odd integers
from 1 to 2n— 1is n®

Before solving this problem, we remark that the sum in question is often
written

(1) 14345+ 4 (2n—1),

Pause 1.
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where the first three terms here—14-3 4 5—are present just to indicate that odd
numbers are being added, beginning with 1, and the last term, 2n— 1, describes
the last term and gives a formula for the general term: The second odd number
is 2(2) — 1; the third odd number is 2(3) — 1, the kth odd number is 2k — 1.
One must not infer from this expression that each of the three numbers 1, 3, 5
is always present. For example, when n =2, 2n —1 = 3 and so the sum in (1)
is, by definition, 1 4 3.
One can also describe the sum (1) with sigma notation,

(2) 1-i-3+5-§—--'+{2n—1):i(ﬂi—l)‘

i=1

so named because the capital Greek letter, 3, used to denote summation, is
pronounced “sigma.” The letter 1 is called the index of summation; the i = 1 al
the bottom and the n at the top mean that the summation starts with¢ =1 and
continues with 1 = 2,3 and s0 on, until 4 = n. Thus, the first term in the sum is
2{ — 1 with i = 1; that is, 2(1) — 1 = 1. The second term is 2{ — 1 with { = 2
that is, 2(2) — 1 = 3. Summing continues until £ = n: The last term is 2n —1.

Write 71 (21 — 1) without using sigma notation and evaluate this sum.
Problem 3 asks us to prove that, for all integers n > 1,
(3) 143454+ (2n—1) =n?

or, equivalently, that

n

> (i-1)=n%

i=1

Solution. In this problem, np=1. Whenn=1,1+3+5+4---+(2n—1)
means “the sum of the odd integers from 1 to 2(1) — 1 = 1.” Thus, the sum is
just 1. Since 17 is also 1, the statement is true for n = 1. Now suppose that it
is true for some integer k > 1; in other words, suppose

14845+ + (k-1 =k

induction hypothesis.

‘We must show that the statement is true for the next integer, n = k4 1; na}mcly,
we must show that

143+5+++ 2k +1)=1) = (k+1)%
Since 2(k + 1) —1 = 2k + 1, we have to show

148454+ (2k+1) = (k+1)%

tl—— WAIT A SECOND

.
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The sum on the left is the sum of the odd integers from 1 to 2k 4 1; this is the
sum of the odd integers from 1 to 2k — 1, plus the next odd integer, 2k 4 1:

L4845t (2k+1)=[+3+5+ -+ (2 =1+ (2k+1).

Using the induction hypothesis, we have then that

14345+ +(2k+1)
=143+5+ -+ 2k—1)+Qk+1) =k +2k+1)

Since k2 + (2 + 1) = (k -+ 1)?, this is the result we wanted. By the Principle of
Mathematical Induction, statement (3) is true for all integers n > 1. O

Why did we “wait a second” during the above argument? It has been the
authors’ experience that students sometimes confuse their statement of what is
to be proven when n = k- 1 with the start of their actual prool. Consequently,
we strongly recommend the following approach to a proof by mathematical in-
duction:

o verify the statement for n = ng;

o write down the induction hypothesis {the statement for n = k) in the form
“Now suppose that ... 7 and be explicit about what is being assumed;

write down what is to be proven (the statement for n=k+ 1) in the form
“We must show that ... 7 again being very explicit about what is to be
shown; and finally (after waiting a second),

e give a convincing argument as to why the statement for n = k+1is true
(and make sure this argument uses the induction hypothesis).

We continue with several examples which the student should take as models
for solutions by mathematical induction.

Problem 4. Prove that for any natural number n 2 1,

12.+.22+32+‘..+n2,—_M.(.%—+H_

Solution. When n = 1, the sum of the integers from 12 to 12is 1. Also

114D 1+1) _,
6 - *

so the statement is true for n = 1. Now suppose that the statement is true for
n =k > 1; that is, suppose that

k(k +1)(2k +1)
e

17422+ 8%+ K =
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We have to show that the statement is true for n = k + 1; that is, we have to
show that

1242487 4o (k1)

_ k4 D(k+ D) +1R(K+1) +1] _ (k+1)(k+2)(2k +3)

6 6
M—— WAIT A SECOND

Observe that

PP+ L (B41)? (P22 432 B+ (k+1)°

k(k +1)(2k +1)

= Ly b4
; +(k+1)

E(k+1)(2k + 1)+ 6(k +1)2
(k+1)[k(2k—fl) +6(k+1)]
(k + 1)[2k2 +:k + 6]
(k+1)(k Zz)(gk +3)

which is just what we wanted. By the Principle of Mathematical Induction, the
statement is true for all integers n > L. O

Problem 5. Prove that for any integer n > 1, 22 — 1 is divisible by 3.

Solution. Whenn=1, 2% —1=22-1=4-1=3 is divisible by 3. Now
suppose that the statement is true for some integer & > 1; that is, sup.i:nose that
22k _1 is divisible by 3. We must prove that the statement is true forn =k +1;
Fhat is, we must prove that 22051} _ 1 is divisible by 3. The key to what [ollows‘;
ls2t,}c1e fact that we must somehow involve the induction hypothesis. Observe that
92(k+1) _ 1 = 92542 _ ] — 4(22%) — 1. This is helpful since it introduces 2%*. By
the induction hypothesis, 2%% — 1 = 3t for some integer ¢, s0 22% = 3t + 1. _\'o':l\-‘
it’s smooth sailing. We have '

22k _ 1 =942 1 =077 1 =4(2%) —1=4(3t+1) -1
=12t+4—1=12t+3=3(4t+1).

Thus, 22+ _1 is divisible by 3, as required. By the Principle of Mathematical
Induction, 22™ — 1 is divisible by 3 for all integers n > 1. O
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PAUSE 2. Prove that 3%" — 1 is divisible by 8 for every n > 1.

Let n be a given positive integer. It is convenient to have some notation for
the product of all the integers between 1 and n since this sort of product occurs
frequently in statistical and in counting problems. (See Chapter 6.)

4.2 DEFINITION, Define 0! =1 and, for any integer n > 1, define

n!=n{n—1)(n-2)---(3)(2)(1).

The symbol n! is read “n factorial” The first few factorials are 0! = 1,11 =1,
20=2-1=2,3=3(2)(1) =6, 41 = 4(3)(2)(1) = 24. It is useful to notice that
41 = 4(3!), 5! = 5(4!), and so on. Thus, if one knows 8! = 40,320, then it is easy
to deduce that 9! = 0(40,320) = 362,880. Factorials grow very quickly. James
Stirling (1730) provided an important estimate for the size of n! when n is large.

4.3 STIRLING'S APPROXIMATION.

n
lim 1;  equivalently, n!~v2fm(g) i

n!
n—oo /2an(nfe)n

In these formulae, e = 2.71828 ... denotes the base of the natural logarithms.
Remember from our discussion of the Prime Number Theorem (Theorem 3.34)
that one reads “is asymptotic to” at the symbol ~. Thus, Stirling’s formula
says that n! is asymptotic to v/2rn(n/e}™. This means that n! is approximately
equal to v/2rn(n/e)", for large n. For example, 15! 2= /307 (15/e)® = 1.3%10'2,
which, by most people's standards, is indeed a large number.

Our next problem provides another indication of the size of n!, albeit a rather
crude one. For example, it says that 15! > 215 = 32,768 and 30! > 230 = 10°.

Problem 6. Prove that n! > 2" for alln > 4.

Solution. In this problem, ng = 4 and certainly 4! = 24 > 16 = 2% Thus, the
statement is true for ng. Now suppose that k& > 4 and the statement is true for
n = k. Thus, we suppose that k! > 2%, We must prove that the statement is
true for n = k + 1; that is, we must prove that (k + 1)! > 28+, Now

(F+ ) =(k+ 1)k > (E+1)2F
using the induction hypothesis. Since k& > 4, certainly k+1 > 2, so (k+1)2F >

2.2k = 28+ \We conclude that (k+1)! > 2F+! as desired. By the Principle of
Mathematical Induction, we conclude that n! > 2" for all integers n > 4. 8]

Pause 3. What was the induction hypothesis in this problem?
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Pause 4. Why did the induction in this example start at n = 4 instead of some smaller
integer?

The Principle of Mathematical Induction is one of the most powerful tools

of mathematics. With it, one can prove many interesting things, but if it is not.

applied correctly, one can also prove some interesting things which are not true,

Problem 7. What is the flaw in the following argument which purports to
show that

24+446+--+2n=(n—-1)(n+2)
for all positive integers n?

“Assume that 24446+ - -4 2k = (k — 1){k + 2) for some integer k.
Then

244464+ +2k+)=(24+44+64+ - +2k)+2(k+1)
= (k= 1)(k+2) +2(k+1)
by the induction hypothesis
=k +k—242%+2
=K%+ 3k
=k(k+3)
=[k+1) - D][(k+1)+2]

which is the given statement for n = k+-1. Tt follows, by the Principle
of Mathematical Induction, that the statement is true for all positive
integers n.”

Solution. The inductive step, as given, is quite correct, but we neglected to
check the case n = 1, for which the statement is most definitely false. O

There is another form of the Principle of Mathematical Induction, called the
strong form, because, at first glance, it appears to be more powerful than the
principle stated previously. The two forms are completely equivalent, however:
The collection of statements which can be proven true using one form is exactly
the collection which can be proven true using the other. It just so happens that
in eertain problems, the strong form is more convenient than the other.”

4.4 PRINCIPLE OF MATHEMATICAL INDUCTION (STRONG FORM). Given
a statement P concerning the integer n, suppose

1. P is true for some integer no; 11, -}
= 4L,
2, ik > nguis any integer and P is true for all integers £ in the range ng <
£ < k, then it is true also for k.
e
Then P is true for all integers n > ng.
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The two forms of the Principle of Mathematical Induction differ only in the
statement of the induction hypothesis (the assumption in the second step). Pre-
viously, we assumed the truth of the statement for just one particular integer and
we had to prove it true for the next largest integer. In the strong form of math-
ematical induction, we assume the truth of the statement for all integers less
than some integer and prove that the statement is true for that integer. When
one first encounters mathematical induction, it seems to be the weak form which
is always used; problems requiring the strong form are seldom encountered. In
the analysis of finite structures, however, the strong form is employed exten-
sively. One wants o acquire knowledge about structures of a certain size from
knowledge about similar structures of smaller size. Recall that part of the Fun-
damental Theorem of Arithmetic states that every natural number greater than
1 is the produet of primes. The strong form of mathematical induction affords
a very straightforward proof of this result.

Problem 8. Use the strong form of mathematical induction to prove that
every natural number n > 2 is either prime or the product of prime numbers.
(See Theorem 3.30.)

Solution. The theorem is a statement about all integers n > 2. The first such
integer, ng = 2, is prime, so the assertion of the theorem is true. Now let k > 2
and suppose that the assertion is true for all positive integers £, 2 < £ < k; in
other words, suppose that every integer £ in the interval 2 < ¢ < & is either prime
or the product of primes. We must prove that &k has this same property. If k is
prime, there is nothing more to do. On the other hand, if k is not prime, then &
can be factored k'= ab, where a and b are integers satisfying 2 < a,b < k. By the
induction hypothesis, each of a and b is either prime or the product of primes.
Thus, k is the product of primes, as required. By the Principle of Mathematical
Induction, we conclude that every n > 2 is prime or the product of primes. O

Our next problem demonstrates another commmon error in “proofs” by math-
ematical induction.

Problem 9. What is wrong with the following argament which purports to
prove that any debt of n dollars, n > 4 can be repaid with only two-dollar bills?

Here np = 4. We begin by noting that any four-dollar debt can be
repaid with two two-dollar bills. Thus, the assertion is true for n = 4.

Now let k > 4 be any integer and suppose that the assertion is true
for all ¢, 4 < ¢ < k. We must prove that the assertion is true for
n = k. For this, we apply the induction hypothesis to & — 2 and see
that a (k— 2)-dollar debt can be repaid with two-dollar bills. Adding
one more two-dollar bill allows us to repay k dollars with only two-
dollar bills, as required. By the Principle of Mathematical Induction,
any debt of n > 4 dollars can be repaid with two-dollar bills,
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Solution. The problem here is that the latter part of the argument does not
work if k = 5.

The i.nductirm Lypothesis—that the assertion is true for all £ 4 < b < k-
was applied to £ =k —2. If k = 5, however, then & — 2 = 3, so the induction
hypothesis cannot be applied. El

We conclude with a brief discussion about the equivalence of the two Princi-
ples of Mathematical Induction and the Well Ordering Principle.

Mathematical Induction and Well Ordering]

Recall that the Well Ordering Principle (paragraph 3.2) says that any nonempty
set of natural numbers has a smallest element. This can be proved using the
weak form of the Principle of Mathematical Induction. Here is the argument.

A set containing just one element has a smallest member, the element itself,
so the Well Ordering Principle is true for sets of size ng = 1. Now suppose it is
true for sets of size &; that is, assume that any set of k natural numbers has a
smallest member. Given a set & of & + 1 numbers, remove one element a. The
Temaining k& numbers have a smallest element, say b, and the smaller of ¢ and b
is the smallest element of S. This proves that any finite set of natural numbers
has a smallest element. We leave to the reader (Exercise 17) the extension of
this result to arbitrary subsets of N.

Conversely, one may use the Well Ordering Principle to prove the Principle
of Mathematical Induction (weak form). For suppose that P is a statement
involving the integer n which we wish to establish for all integers greater than
or equal to some given integer ng. Assume

1. P is true for n = ng, and
2. if P is true for an integer k > ny, then it is also true for k -+ 1.

How does the Principle of Well Ordering show that P is true for all nn > ng! For
convenience we assume that ng > 1. (The case ny < 0 can be handled with
slight variation of the argument we present below.)

If P is not true for all n > ng, then the set S of natural numbers n > ng for
which P is false is not empty, By the Well Ordering Principle, S has a smallest
element a. Now a # ng because we have established that P is true for n = ng.
Thus, a > ng, s0 a— 1> ng. Also,a—1 < a. By minimality of a, P is true for
k=a—1. By assumption 2, P is true for k+ 1 = a, a contradiction. We are
forced to conclude that our starting assumption is false: P must be true for all
n = ng.

The pt.cceding paggraphs show that the Principles of Well Ordering and
Mathematical Induction {weak form) are equivalent., With minor variations in
the reasoning above, one can prove that the Principles of Well Ordering and
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Mathematical Induction (strong form) are equivalent. It follows, therefore, that
the three principles are logically equivalent.

Answers to Pauses
1. T4, (2i-1) = [2(1)-1]+[2(2) 1]+ [2(3) - 1]+[2(4) — 1] = 1434547 = 16.
2. Whenn=1,3% -1=3-1=9—-1=8is divisible by 8. Now suppose
that the statement is true for some integer & > 1; that is, suppose that

32k _ 1 is divisible by 8, Thus, 3%* — 1 = 8t for some integer ¢ and so
3%k =8t + 1. We have -

g20k+1) _q — g2k+2 lzg{s‘zk)_l
:9(8t+1)—1=72f+9—1=?2t+8=8(9?§+1}.

Thus, 320:+1 — 1 is divisible by 8, as required. By the Principle of Math-

3 ematical Induction, 3°™ — 1 is divisible by 8 for all integers n > 1.

3. The induction hypothesis was that &! > 2 for some particular integer
g1 k>4

1 4. The statement n! > 27 is not true for n < 4; for example, 3! = 6, whereas
2 =8

_ EXERCISES

'. 1. Write each of the following sums without using 3 and evaluate.

| ! (a) [BB] E; 1"‘2

i (b) T, 2

(c) [BB] Tt sinwt

(d) 3537+

(¢) Tho_4(2k? —k+1)
! (f) Theo(-1)*

2. List the elements of each of the following sets:

(a) {Z";U(—l)" |n=0,1,2,3}
(b) {2 [neN,1<n <5}

1Remember that [BB] means that an answer or solution can be found in the Back of the
Book.
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3. Prove that if is possible to fill an order for n > 32 pounds of fish given
bottomless wheelbarrows full of five-pound and nine-pound fish,

4. Use mathematical induction to prove the truth of each of the following
agsertions for alln = 1.

(a) [BB] n® +n is divisible by 2.

(b) n®+ 2n is divisible by 3.

(¢) [BB]n®+ (n+ 1) + (n+ 2)? is divisible by 9.

(d) 5™ —1 is divisible by 4.

(e) 8" —3" is divisible by 5

(F) 10"+ 410" 4 1 is divisible by 3.

(g) a™ —b" is divisible by a — b for any integers a,b with a — b £ 0.

5. (a) [BB] Prove by mathematical induction that

et e T @
for any natural number n.
(b) Prove by mathematical induction that
13+23—'~-‘-+n,3 = M
' 4

for any natural number n.

(c) Use the results of (a) and (b) to establish that
(I+248+-+n) =134 4... 40

foralln>1.

6. Use mathematical induction to establish the truth of each of the following
statements for all n > 1.

) BB]1+2+22+23 4. 49 =gndl _
b) [BB] 12_22 3% _ 42_;_...4.,{__])11—1”'2 ( )ﬂ_l'ﬂ- n+1)_

() 12+ 32 45 oo d (1) = 73(2?1—1}(2714—1)_

3
(d) 1-2:3+2:3-448-4-5+ -+ n(n+1)(n+2) = ”(““}(”: Ant3)
1 11 L m
LT e e e e
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7. [BB; (a)] Rewrite each of the sums in Exercise 6 using > notation.

8. Use mathematical induction to establish each of the formulas below.

(a) [BB] Tiuy (i +1)2 = n2v+t

: 2 _ nn+1)
(b) é (20 -1)(2i4+1) T 2(2n+1)
(& S (zi- 1)z = Mot lin=d)

i=]1
9, Use mathematical induction to establish each of the following inequalifies.
(a) [BB] 2" > n?, forn > 5.
(b) 1+3)=1+3 forneN.
(¢) Forany peR,p>—1, (14+p)* =2 1+npforalln € N.
3
(d) For any integer n > 2, ;;:'1_—1 —!—%_‘_Z—I—;:l;ﬁ ot > 2B

{e) i%>\/ﬁforn}:2‘

i=1

10. Suppose ¢,%1,%3,. -+ yTns Y1, Y2+ 1 Yn are 2n +1 g‘lVE]El numbers. Prove
each of the following assertions by mathematical induction.

(a) [BE] Z(Sﬂx +ui) = Zx,- + Zy,- forn = 1.
i=1

i=1 i= i=1
n n
{b) Zc:c,; = cZ:n,r forn > 1.
i=1 i=1
n
(<) Z(:z,, —zio) =z —xy form 2 2.

11. [BB] Find the fault in the following “proof” that in any group of n people,
everybody is the same age.

Suppose n = 1. If a group consists of just one person, every-
body is the same age. Suppose that in any group of k people,
everyone is the same age. Let G = {a1,a2;... ,0r41} be a group
of k + 1 people. Since each of the groups {ai,as,...,ar} and
{az,as,... ,ak41} consists of k people, everybody in each group
has the same age, by the induction hypothesis. Since as is in
each group, it follows that all k+1 people a1, az, ... , Gk have
the same age.
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12. Find the fault in the following “proof” by mathematical induction that

2 -12
142484 +n= (”—;]
for all natural numbers n.
2 2
E14+243+4-4k= e+l kzl) , then

I+2434 -+ (k+1)=(14+24+834+ -+ )+ (k+1)

=—~(2k21}? + (k+1)
AR 4k 4148k +8
8
_4E?+12k 49
§
_ (k43 _ [k +1)+1P
8 8

and so truth for k implies truth for &+ 1.

13. What is wrong with the following “proof” that any order for n > 10 pounds
of fish can be filled with only five-pound fish?

We use the strong form of mathematical induction. Here ng =
10. Since an order for ten pounds of fish can be filled with two
five-pound fish, the assertion is true for n = 10. Now let & > 10
be an integer and suppose that any order for £ pounds of fish,
10 € £ < k, can be filled with only five-pound fish, We must
prove that an order for k pounds can be similarly filled. But by
the induction hypothesis, we can fill an order for k — 5 pounds
of fish, so, adding one more five-pounder, we can fill the order
for k pounds. By the Principle of Mathematical Induction, we
conclude that the assertion is true for all n > 10,

14. One of several differences between the Canadian and American games of
football is that in Canada, a team can score a single point without first
having scored a touchdown. So it is quite clear that any score is possible in
the Canadian game. Ts this so in the American game? Indeed this seems
to be the case, even assuming (this is not true!) that in the United States,
points can be scored only three at a time (with a field goal) or seven at a
time (with a converted touchdewn). Here is an argument.

Assume that % points can be achieved with multiples of 3 or 7.
Here's how to reach k+1 points. If k points are achieved with at




=1
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16.

17.

18.

19.

20.

least two field goals, subtracting these and adding a touchdown
gives k-+1 points. On the other hand, if the & points are achieved
with at least two touchdowns, subtracting these and adding five
field goals also gives k + 1 points.

Does this argument show that any score is possible in American football?
Can it be used to show something about the nature of possible scores?

. It is tempting to think that if a statement involving the natural number n

is true for many consecutive values of n, it must be true for all n. In this
connection, the following example due to Euler is illustrative.

Let f(n) =n®+n+41.

(a) Convince yourself (perhaps with a computer algebra package like
Maple or Mathematica) that f(n) is prime for n = 1,2,3,...309 but
“that f(40) is not prime.

(b) Show that for any n of the form n = k% + 40, f(n) is not prime.

[BB] Prove that a set with n elements, n > 0, contains 2" subsets.

Suppose that any nonempty finite set of natural numbers has a smallest
element. Prove that any nonempty set of natural numbers has a smallest
element.

(a) Prove that for any integer n > 1, any set of n positive real numbers
has a smallest element.

(b) Prove that the result of (a) is not true for infinite sets of positive real
numbers in general but that it is true for some infinite sets.

(c) What is the name of the principle which asserts that any nonempty
set of natural numbers has a smallest element?

[BB] Generalize the result of Exercise 26, Section 1.2 by proving that for
any n = 1, any set A and any n sets By, Ba,..., By,

AU (N B:) = Mg (AUBY.
For any set A and any n sets By, By, ... , B, prove that

AN (U Bi) = Ui (AN By).

. In Section 1.2, we defined the symmetric difference of two sets. More

generally, the symmetric difference of n > 8 sets Ay,... , A, can be defined
inductively as follows:

AL&;,..@_AH:.(Ale"'eBAn—i}eAﬂ'

Prove that forany n > 2, 4,8 4, @ ® A, consists of those elements in
an odd number of the sets A;,...,4,.

4.1.

22,

24.

25.

26,

27.

Mathematical Induction 177

Let Iy, denote the nth Fermat number; thus, £, = 22" + 1. Prove that
Fu = 2 s the product FyFy fy - Fy g forall n > 1.

- Prove Theorerm 3.49 (Chinese Remainder) by mathematical induction,

[BB] For n > 3, the greatest common divisor of n nonzero integers a,, as,
- 8y can be defined inductively by

god(ay, ... ,a.) = ged(as, ged{as,. .. 13y

Prove that for all n > 2, ged(ay, az,... ,a,) is an integral linear combina-
tion of the integers a1, as,... ,an; that is, prove that there exist integers
815+, 8n such that ged(ay, ... ,an) = s1a; + s2ag + -+« + spa,.

The definition of the greatest common divisor of n > 3 integers given in
Exercise 24 differs from that given in the exercises to Section 3.2. Suppose
@1,...,ay are nonzero integers. Show that ged{ay,... ,a,), as defined in
Exercise 24, satisfies the properties given in Definition 3.21.

Suppose n and my,ms, ..., m; are natural numbers, and that the m; are
pairwise relatively prime. Suppose each m; divides m. Prove that the
product mymy - -1y divides n. (Hint: induction on ¢ and Exercize 10 of
Section 3.2.)

n—2 n > 1000

Define f: Z— Z by f(n) = {f(f(n-i—ﬂ) n < 1000.

(a) Find the values of f(1000 — n) for n =0,1,2,3,4, 5.

(b} Guess a formula for f(1000—n) valid for n > 0 and Prove your answer.
(c) Find f(5) and 7(20).

(d) What is the range of f7?

4.5 DEFINITION. A set A of integers is called an ideal if and only if

(i) 0 4,
(ii) if @ € A, then also —a € 4, and
(iii) if a,b € A, then a + b e A.

28. For any integer n > 0, recall that nZ = {kn | k € Z} denotes the set of

multiples of n.

(a) Prove that nZ is an ideal of the integers.

(b) Let A be any ideal of Z. Prove that A = nZ for some n >0 by
establishing each of the following statements.
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29.

30.

31.

33.

i. If A contains only one element, then A is of the desired form.
Now assume that A contains more than one element.
ii. Show that A contains a positive number.
iii. Show that A contains a smallest positive number n.
iv. nZ C A, where n is the integer found in iii.
v. A CnZ. (Hint: Theorem 3.5, the division algorithm.}

[BB] Prove that for every integer n > 2, the number of lines obtained by
joining n distinct points in the plane, no three of which are collinear, is
n(n —1)/2.

An n-sided polygon (commonly shortened to n-gon) is a closed planar
figure bounded by n straight sides no two of which intersect unless they
are adjacent, in which case they intersect just at a vertex. Thus, a 3-gon
is just a triangle, a 4-gon is a guadrilateral, a 5-gon is a pentagon, and so
on. An n-gon is conver if the line joining any pair of nonadjacent vertices
lies entirely within the figure. A rectangle, for example, is convex. Prove
that the sum of the interior angles of a convex n-gon is {n — 2)180° for all
n > 3.

Suppose a rectangle is subdivided into regions by means of straight lines
each extending from one border of the rectangle to another. Prove that
the regions of the “map” so obtained can be colored with just two colars
in such a way that bordering “countries” have different colors.

. True or false? In each case, give a proof or provide a counterexample which

disproves the given statement.

(a) [BB] 5" + n+ 1 is divisible by 7 fer all n > 1,
(b) > regk+1)=n{n+3)/2foralln>1.

(! (a+Yh _ (1+2)
2 v 2 6
(d) (For students of calculus) n'® > 2™ for all n > 1.

(c) Ifn > 2, ged(

(For students who have completed a course in differential ealeulus) State
and prove (by mathematical induction) a formula for 4£z™ which holds for
alln > 1.
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4.6 NOTATION. The product of n elements ay,as, ... ,a, is denoted H Qe

r=1
34. Prove that for any natural number n and any real number ¢ # 41,

art 1

= 1—u
Lda?)=—"—
[Ma+2) =77

r=1

35. [BB] (For students of calculus) The condition z® # 1 is necessary in Ex-
ercise 34 since otherwise we would have a denominator of 0 on the right.

However,
41 +1
. 1=g? . 1—a¥
lim ———— and lim =
z=411—2 z—+-11—z?

both exist. Use the result of Exercise 34 to find theze limits.

36. Find an expression for [} _, g::é valid for n > 2 and prove by mathemat-

ical induction that your answer is correct.

37. (a) Prove that the strong form of the Principle of Mathematical Induction
implies the Well Ordering Principle.

(b} Prove that the Well Ordering Principle implies the strong form of the
Principle of Mathematical Induction, (Assume ny > 1.)

38. In this section, we have studied two formulations of the Principle of Math-
ematical Induction.

(a) Use either of these to establish the following (peculiar?) third formu-
lation.

Suppose P(n} is a statement about the natural number n
such that

1. P(1) is true;

2. For any k > 1, P(k) true = P(2k) true; and,

3. For any k > 2, P(k) true = P(k—1) true.

(b) Prove that for any two nonnegative numbers = and y, i :: & > VI

(c) Use the Principle of Mathematical Induction in the form given in
part (a) to generalize the result of part (b), thus establishing the
arithmetic mean-geometric mean ineguality: For any n > 1 and any
n nonnegative real numbers a1, as,...aq,

ay+ag+---+ag >
n

ayug -y .
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4.2 Recursively Defined Sequences
Suppose n is & natural number, How should one define 27 One could write

o = 9. 9ugud

(il e
n 2s
but could also write,
(4) 2 =2 and, fork>1, 2¢F1=2.2%

The latter statement is an example of a recursive definition. It explicitly
defines 2" when n = 1 and then, assuming 2" has been defined for n = k, defines
it for n = k + 1. By the Principle of Mathematical Induction, we know that 27
has been defined for all integers n = 1.

Another expression that is most naturally defined recursively is n!, which was
introduced in Section 4.1. If we write

0l=1 and fork>0, (k+1)=(k+1)kl

then it follows by the Principle of Mathematical Induction that n! has been
defined for every n > 0.

Sequences of numbers are often defined recursively. A sequence is a function
whose domain is some infinite set of integers (often N) and whose range is a
set of real numbers. Since its domain is countable, we can and usually do de-
seribe a sequence by simply listing its range. The sequence which is the function
f: N = R defined by f(n) = n?, for instance, is generally described by the list
1,4,9,186,..., the idea being to write down enough numbers from the start of
the list that the rest can be inferred. The numbers in the list (the range of the
function) are called the terms of the sequence. Sometimes we sfart counting at 0
(if the function has domain NU{0}) so that the terms are denoted ag, ay,az, ... .

The sequence 2,4, 8,16,... can be defined recursively like this:

(5) ap=2 and, fork>1, apsy = 2.

By this, one understands that a; = 2 and then, setting k = 1 in the second part
of the definition, that ap = 2a; = 2(2) = 4. With k=2, a3 = 2a; = 2(4) = §;
with k = 3, ag = 2a3 = 2(8) = 16 and so on. Evidently, (5) defines the sequence
we had in mind. Again, the definition is recursive because each term in the
sequence beyond the first is defined in terms of the previous term.

The equation agyy = 2ax in (5), which defines one member of the sequence
in terms of a previous one, is called a recurrence relation. The equation a; =2
is called an initial condition.

There are other possible recursive definitions which describe the same se-
quence as (3). For example, we could write

ag=2 and, for k>0, ag41=2ag,
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or we could say

ap =2 and, fork>2, ap=2a_;
The reader should verify that these definitions give the same sequence; namely,
2,4,8,16,... .

Sometimes, after computing a few terms of a sequence which has been defined
recursively, one can guess an explicit formula for a,,. In (5), for instance, a,, = 2".
We say that a, = 2" is the solution to the recurrence relation. Our goal in this
section and the next is to gain some skill at solving recurrence relations.

Problem 10.  Write down the first six terms of the sequence defined by a; =1,
@pt+1 = 3ap + 1 for k > 1. Guess a formula for a,, and prove that your formula
is correct.

Solution. The first six terms are

f11=l
ap=3a;+1=3(1)+1=4
ag=3az+1=3(4}+1=13

a4 = 40
a5 = 121
ag = 364.

Since there is multiplication by 3 at each step, we might suspect that 3™ is
involved in the answer. After trial and error, we guess that a, = % and
verify this by mathematical induction.
- 1_ . 0 .

_ When n = 1, the formula gives =3-2—1 = 1, which is indeed ai, the first term
in the sequence.

- 4 k—

Now assume that a; = % for some k > 1. We wish to prove that agy; =

k1 _
% . We have

B_
sy =3a;+1 =3(3—2-—1} +1
using the induction hypothesis. Hence,

gt 3 ghHL 1
a =— = = 1l ——
T 2

as required. By the Principle of Mathematical Induction, our guess is cortect. O

Problem 11. A sequence is defined recursively by ag = 1, a; = 4 and a,, =
da,_1 —4dan_p for n > 2. Find the first six terms of this sequence. Then solve
the recurrence by guessing a formula for a,. Establish the validity of your guess.

Solution. Here there are two initial conditions—ag = 1,a; = 4. Also the
recurrence relation, a, = 4ay-) — 4ap—2, defines the general term as a function
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of two previous terms. The first six terms of the sequence are

ag=1

a) = 4

6z = day — dag = 4(4) — 4(1) = 12

a3 = dap — da; = 4(12) — 4(4) = 32
ay = dag — day = 4(32) — 4 12) =80
a5 = day — 4oz = 4(80) — 4(32) = 192.

Finding a general formula for a,, requires some ingenuity. Let us carefully exam-
ine some of the first six terms. We note that a3 = 32 = 24+ 8 = 3(8) + 8 = 4(8)
and aq = 80 = 64+ 16 = 4(16)4+-16 = 5(16) and a5 = 192 = 6(32). We are led to
guess that a, = (n+1)2*, To prove this, we use the strong form of mathematical
induction (with ng = 0).

When n = 0, we have (0+ 1)2° = 1(1) = 1, in agreement with the given
value for ag. When n = 1, (14 1)2' = 4 = a;. Now that the formula has been
verified for k& = 0 and k = 1, we may assume that k > 1 and that ap, = (n+1)2"
for all n in the interval 0 < n < k. We wish to prove the formula is valid for
n = k; that is, we wish to prove that a; = (k+ 1)2%. Since k > 2, we know
that a; = dap_; — 4ap_o. Applying the induction hypothesis to k — 1 and to
k — 2 (each of which is in the range 0 < n < k), we have az—y = k25~ and
ag—as=(k— 1)2’“_2. Thus,

ap = 4(k25 1) — 4(k — 1)2%2
= 9k0% — k0 428 = ok 4 9F = (k4 1)2F

as required. By the Principle of Mathematical Induction, the formula is valid
foralln = 0. O

In effect, our method of verifying the formula a, = (n+ 1)2" in this exam-
ple amounts simply to checking that it satisfies both initial conditions and also
the given recurrence relation. We prefer the more formal approach of mathe-
matical induction since it emphasizes this important concept and avoids pitfalls
associated with working on both sides of an equation at once.

As previously mentioned, there is nothing unique about a recursive definition.
The sequence in the last example can also be defined by

ap=1l,e; =4 and, forn>1, ap:1=4dan—40,-1.
In this case, we again obtain a, = (n+1)2". We could also say
a;=1l,as=4 and forn>1, anpo=dany —4o.

but then, labeling the first term a; instead of ag would give a, = n2"~'. Other
variants are also possible.
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Some Special Sequencesl

Suppase you have 330 in an old shoe box and acquire a paper route which nets
you $14 a week. Assuming all this money goes into your shoe box on a weekly
basis (and you never borrow from it), after your first week delivering papers,
your shoe box will contain 364; after two weeks, $78; after three weeks, %02
and so on. A sequence of numbers like 50, 64,78,92,..., where each term is
determined by adding the same fixed number to the previous one, is called an
arithmetic sequence. The fixed number is called the common difference of the
sequence (because the difference of successive terms is constant throughout the
sequence).

Examples 1.
e 50,64,78,92,... is an arithmetic sequence with common difference 14.

e —17,—12,-7,-2,3,8,... is an arithmetic sequence with common differ-
ence .

e 103,99,95,01,... is an arithmetic sequence with common difference —4.
N |
4.7 DEFINITION. The arithmetic sequence with first term a and common difference

d is the sequence defined by

ay=a and fork>1, apu=a;+d

The general arithmetic sequence thus takes the form
a,a+d,a+2d,a+3d,...

and it is easy to see that, for n > 1, the nth term of the sequence is

(6) an,=a+ (n—1)d. ‘

We leave a formal proof to the exercises and also a proof of the fact that the sum

of n terms of the arithmetic sequence with first term ¢ and common difference
d is

(7) §=12[2a+(n-1)d. ‘
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Example 2. The first 100 terms of the arithmetic sequence which begins
—17,-12,-7,-2,3,... have the sum
5 =100 [2(—17) + 99(5)] = 50(—34 -+ 495) = 23,050.

The 100th term of this sequence is ajpg = —17 + 99(5) = 478 (by (6)). The
number 2038 occurs as the 412th term, as we see by solving —174+(n—1)5 = 2038
[ |

Many people with paper routes deposit thelr carnings in a bank account
which pays interest instead of into a shoe box which does not. Fifty dollars in a
bank account which pays 1% interest per month accumulates to 50+ (.01 % 50) =
50(1+.01) = 50(1.01) dollars after one month. After another month, the original
investment will have accumulated to what it was at the start of the month plus
1% of this amount; that is,

50(1.01) + .01(50)(1.01) = 50(1.01)(1 + .01) = 50(1.01).

After three months, the accurnulation is 50(1.01)% dollars; after twelve months,
it is 50(1.01)'2 dollars (~ $56.34). A sequence of numbers such as

50,50(1.01),50(1.01)%,...
in which each term is determined by multiplying the previous term by a fixed
number is called a geometric sequence. The fixed number is called the common
ratio.
Examples 3. :
e 50,50(1.01),50(1.01)2,. .. is a geometric sequence with common ratio 1.01.

e 3,-6,12,—24,... is a geometric sequence with common ratio —2.

is a geometric sequence with common ratio }.
U

©9,3,1,%,...

4.8 DEFINITION. The geometric sequence with first term o and common ratio r is
the sequence defined by

ay =0 and fork>1, apy=ra;.

The general geometric sequence thus has the form

a,ar, arg, ard,art, ...

the nth term being @, = ar™™1, This is straightforward to prove, as is the
following formula for the sum S of n terms, provided r #£ 1.

@)

Pause 1.
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Example 4. The sum of 29 terms of the geometric sequence with a = 8'% and
r=-1/2is

) Y i 29 L1 (32 936 4 o7 .
S= 512 1 _((-_“2} =938 52} = g_r‘_ = %(23r 53 23}.
2 2 2

e o)

What is the 30th term of the geometric sequence just described?

Leonardo Fibonacei,® also known as Leonardo of Pisa, was one of the bright-
est mathematicians of the Middle Ages. His writings in arithmetic and algebra
were standard authorities for centuries and are largely responsible for the intro-
duction into Europe of the Arabic numerals 0,1,... ,9 we use today. Fibonacei
was fond of problems, his most famous of which is concerned with rabbits!

Suppose that newborn rabbits start producing offspring by the end of their
second month of life and that after this point, they produce a pair a month (one
male, one female). Assuming just one pair of rabbits initially, how many pairs of
rabbits, Fibonacci asked, will be alive after one year? The sequence which gives
the number of pairs at the end of successive months is the famous Fibonacei
sequence.

After one month, there is still only one pair of rabbits in existence, but after
a further month, this pair is joined by its offspring; thus, after two months,
there are two pairs of rabbits. At the end of any month, the number of pairs of
rabbits is the number alive at the end of the previous month plus the number of
pairs alive two months ago, since each pair alive two months ago produced one
pair of offspring. We obtain the sequence 1,1,2,3,5,8,13,... which is defined
recursively as follows.

4.9 THE FIBONACCI SEQUENCE.

Pause 2.

Pausk 3.

Hh=1fa=1 and,fork>2, frp1=Ffc+ fior.

Think of the Fibonacci sequence as a function fib: N — N. List eight elements
of this function as ordered pairs. Is fib a one-to-one function? Is it onto?

What is the answer to Fibonacei's question?

Although we have found an explicit formula for the nth term of most of the
sequences discussed so far, there are many sequences for which such a formula
is difficult or impossible to obtain. (This is one reason why recursive definitions
are important.) Is there a specific formula for the nth term of the Fibonacci
sequence? As a matter of fact, there is, though it is certainly not one which

Fibonacci was born around the year 1180 and died in 1228, “Fibonacci® is a contraction
of “Filius Bonaceii,” Latin for “son of Bonaccio.”
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many people would discover by themselves, We show in the next section (see
Problem 14) that the nth term of the Fibonacei sequence is the closest integer
to the number

mn

1 1++/5
© \;5( |
The first few values of %(%)n are approximately 0.72361, 1.17082, 1.89443,
3.06525, 4.95967, 8.02492, 12.98460, and 21.00952; the integers closest to these
numbers are the first eight terms of the Fibonacci sequence.

Finally, we observe that one must be careful with sequences apparently de-
fined recursively, since some recursive definitions do not define actual sequences!
Consider, for example,

l+azy ifkiseven

=1 andylonk sl ak:{l-i—agk_l if k is odd.

What happens if we try to write down the first few terms of this sequence?

aL-:l

ﬂ.2=1+ﬂ.]_=]+1=2
a3=l+ag=1+(1+a)=2+a3=2+(1+a)=3+ay=5
tg=140=1+2=3,

but then as l+aa=14+(14a7)=24ay
2+(1+aQDJ =3+ﬂgo=3+(l+ﬂ10)
= 4d+ap=4+(1+a)=5+as
and, to our dismay, we have reached the absurdity 5 = 0. Obviously, no sequence
has been defined.

Compute the first six terms of the sequence “defined” as follows:

1+agm if k is even

gy =1 and, for k> 1, ﬂk:{l-i-aak.u if & is odd.

Answers to Pauses
1. Haren =130, a =82 = (23)12 = 2% and r = —(271), 50
agp = 290[—(271)]?® = 239~ = o7 — _198,
2. The most obvious eight pairs are (1,1), (2,1), (3,2), (4,3), (5,5), (6,8),
(7,13) and (8,21). The Fibonacci function is not one-to-one because

(1,1) € fib and (2,1) € fib but 1 # 2. It’s not onto since, for exam-
ple, 4 is not in the range.
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3. The number of rabbits in existence after twelve months is the thirtcenth
term of the Fibonacci sequence, 233.

4. (431 21‘, a2=1+al=l+1: 2; a;;:l-{-am = 1—I—l+a5=2+1~:-am:
34+ais. Nowayg=1+ag=1+1+4as =1+1+1+a; =3+2=35,s0 that
a3 =3+ 5 =8 Continuing, ay =14+a:=3; a5 =1+a; =115 =6;
o =1+ay=1+48=29. The first six terms are 1,2,8,3,6, 0.

EXERCISES
1. Give recursive definitions of each of the following sequences:
(a) [BB] 1,5,52,5% 5%, ...
(b) 5,3,1,-1,-3,...
(¢) 4,1,3,-2,5,—7,12,—19,31,...
(d) 1,2,0,3,-1,4,-2,...

2. (a) [BB] Find the first seven terms of the sequence {a,} defined by

1 if ag = 1
a) = 16, and for k >1, Qg1 = ak,l’z if @y, is even
(ap —1)/2 if ax # 1 is odd.
(b) Repeat part (a) with a; = 17.
(c) Repeat part (a) with a; = 18.
(d) Repeat part (a) with a; = 100.

3, Let a1, a2, a3, ... be the sequence defined by a1 = 1, apyy = 3ay, for k > 1.
Prove that a, = 3" L forall n > 1.
4. [BB] Suppose 61, @2, 3,... is a sequence of integers such that a; =0 and,

for n > 1, a; = n® +a,-1. Prove that for every integer n > 1,

(n—1){n+2)(n*+n+2)
+ ’

O =

5. Define the sequence ay,az,as,... by ay = 0, az = % and, fot k£ > 1,
Okt2 = %(ak + agy1). Find the first seven terms of this sequence. Prove
that for every n > 1,

an = 3(1—(-1/2)~1).

6. [BB] Let a1, a2,as,... be the sequence defined by a; = 1 and, forn > 1,
an = 2a,_; + 1. Write down the first six terms of this sequence. Guess a
formula for a. and prove that your guess is correct,
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10.

v 1l.

12.

13.

14.

1 4q o
. Let a1,a0,as,... be the sequence defined by a; = 3 and a, = fay_1 — 1

for 11 > 2. Write down the first six terms of this sequence. Guess a formula
for a;, and prove that your guess is correct.

. Suppose agp,e1,83,... 18 & sequence such that ap = a1 =1 and for n = 1,

Ayl = R(L‘l,; T 0n—1 )

(a) Find as, 03, a4 and ag.
(b) Guess a formula for a,, valid for n = 0, and use mathematical induc-
tion to prove that your guess is correct.

. [BB] Consider the sequence defined by a1 = 1, @n41 = (n+1)? - an for

n > 1. Find the first six terms. Guess a general formula for a, and prove
that your answer is correct using mathematical induction.

Let a;,a2,a3,... be the sequence defined by a; =1, ar41 = (k + Dag for
k> 1. Find a formula for a, and prove that your formula is correct.

[BB] Suppose ay,ag, as, . .. is & sequence of integers such that a; =0, a2 =
1 and for n > 2, @ = 4a,_2. Guess and then establish by mathematical
induction a formula for ay.

A sequence is defined recursively by ap = 2, a1 = 3and an = 3on.1—2an_2
forn = 2.

{a) Find the first five terms of this sequence.

(b) Guess a formula for an.

(c) Verify that your guess in {b) is correct.

(d) Find a formula for a, which involves only one preceding term.

Let aj,as, a3,... be the sequence defined by a; =1, ap = 0 and for n > 2,
@n = day_1 — 4u,_y. Prove that a, =2°(1—5) foralln > L.

Let aj,as, as,... be the sequence defined by
a; =1, and for k> 1, ap41= kzak,

Find the first six terms of this sequence. Guess a general formula for an
and prove your answer by mathematical induction.

. Consider the arithmetic sequence with first term 2 and common difference

3.

(a) [BB] Find the first ten terms and the 123rd term of this sequence.

4.2,

Recursively Defined Sequences 189

16

17

18

19

20

21

ratlo — 3

(b) [BB] Duoes 752 belong to this sequence? If so, what is the number of

the term where it appears?

{c) Repeat (b) for 1023 and 4127.
(d) [BB] Find the sum of the first 75 terms of this sequence.

. Consider the arithmetic sequence with first term 7 and common difference
—1/2.

(a) Find the 17th and 92nd terms.
(b) Find the sum of the first 38 terms.

. Consider the arithmetic sequence which begins 5,9, 13.

(a} Find the 32nd and 100th terms of this sequence.

(b) Does 125 belong to the sequence? If so, where does it oceur?
(c) Repeat (b) for the numbers 429 and 1000.

(d) Find the sum of the first 18 terms.

. Consider the arithmetic sequence which begins —123, —117.

(a) Find the 77th and 121st terms of this sequence.
{b) For each of the numbers —65,0,1773 determine whether or not the

number is in the sequence and if it is, its term number.

(c) Find the sum of the first 77 terms of the sequence.

. An arithmetic sequence begins 116,109, 102.

(a) Find the 300th term of this sequence.

(b) Determine whether or not —480 belongs to this sequence. If it does,

what is its term number?

(¢) Find the sum of the first 300 terms of the sequence.

. Establish formulas (6) [BB] and (7) for the nth term and the sum of the
first n terms of the arithmetic sequence with first term a and common
difference d.

. [BB] Consider the geometric sequence with first term 59,049 and common

1

(a) Find the first ten terms and the 33rd term of this sequence.
(b) Find the sum of the first 12 terms.
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22, Consider the geometric sequence which begins —-3072, 1536, —768.

(a) Find the 13th and 20th terms of this sequence.

(b) Find the sum of the first nine terms.

23. If the first term of a geometric sequence is 48 and the sixth term is —%,
find the sum of the first ten terms.

24. (a) Find, to four decimal places, the 129th term of the geometric sequence

which begins —0.00001240, 0.00001364.

(b) Find the approximate sum of the first 129 terms of the sequence in
(a).

25. [BB] Verify formula (8) for the sum of n terms of a geometric sequence
with first term a and common ratio v # 1.

26. Consider the sequence defined recursively by a; = 1 and for n > 1, a, =
Z;:ll a;. Write down the first six terms of this sequence, guess a formula
far a, valid for n > 2, and prove your answer.

27, (a) Find the sum of 18 terms of the geometric sequence with first term

7/1024 and common ratio 8.

(b) [BB] Suppose |r| < 1. Explain why the sum of the first n terms
of the geometric sequence with first term o and common ratio r is
approximately ¢%-.

(c) [BB] Find, approximately, Y iy 3/2%.

(d) Find the approximate sum of the first 1 million terms of the geometric
sequence which begins 144, 48, 16.

28. (a) Find the 19th and 100th terms of the geometric sequence which has

first term 98,415 and common ratio 3.

(b) Find the sum of the first 15 terms of the sequence in (a).

(¢) Find the approximate sum of the first 10,000 terms of the sequence
in (a).

29, Given that each sum below is the sum of part of an arithmetic or geometric

sequence, find each sum.

(a) [BB] 75+ 71+ 67+63+ -+ + (—61)

(b) T5+154+3+%4+---+ &
(c) =52—41=30 =19+ -+ +949
(dy 1-2+1-1+tas
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30.

31.

32,

3a.

34.

35.

36.

37.

A bank account pays interest at the rate of 100i% a year. Assume an initial
balance of P, which accumulates to s, after n years.
(a) Find a recursive definition for s,.

(b} Find a formula for s,.

Maurice borrows 81000 at an interest rate of 15%, compounded annually.

{a) How much does Maurice owe after two years?
(b) In how many years will the debt grow to $20007

On January 1, 1893, you have 550 in a savings account, which pays interest
at the rate of 1% per month. At the end of January and at the end of
each month thereafter, you deposit 556 to this account. Assuming no
withdrawals, what will be your balance on January 1, 19947

On June 1, you win $1 million in a lottery and immediately acquire numer-
ous “friends,” one of whom offers you the deal of a lifetime. In return for
the million, she'll pay you a cent today, two cents tomarrow, four cents the
next day, eight cents the next, and so on, stopping with the last payment
on June 21.

(a) Assuming you take this deal, how much money will you receive on
June 217
(b) Should you take the deal? Explain.

(c) Would you take the deal if payments continued for the entire month
of June?

Define a sequence {a,,} recursively as follows:

og=0, andforn>0, a,=ap,s +ajgs +n

Prove that o, < 20n for all n > 0. (Recall that [z denotes the floor of

the real number x. See paragraph 2.6.)

Suppose we think of the Fibonacci sequence as going backward as well as
forward. What seven terms precede 1,1,2,3,5,8,...7 How is f_, related
to ful

[BB] Let {f;} denote the Fibonacci sequence. Prove that fneifn =
v ffforalln> L

Represent the Fibonacei sequence by fi = fa = 1, fo = faoi + fu—z for
7 Ehe

(a) Verify the formula fi + fad fa 4+ + frn = fasz— liorn =4, 5, 6.
(b) Prove that the formula in (a) is valid for all n > 1,
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38.

39.

40.

41.

42,

43.

Show that, for n > 2, the nth term of the Fibonacci sequence is less
than (7/4)"~1. (Use the definition of the Fibonacci sequence, not the
approximation to f,, glven in equation 9).

[BB] What is wrong with the following argument, which purports to prove
that all the Fibonacci numbers after the first two are even?

Let f,, denote the nth term of the Fibonacei sequence. We prove
that £, is even for all n > 3 using the strong form of the Principle
of Mathematical Induction. The Fibonacci sequence begins 1, 1,
2. Certainly f3 = 2 is even and so the assertion is true for ng = 3.
Now let I be an integer k > 3 and assume that the assertion 13
true for all nn, 2 < n < k; that is, assume that f; is even for all
n < k. We wish to show that the assertion is true for n = k; we
wish to show that fi is even. But fi = fr-1 + fr—2. Applying
the induction hypothesis to k —1 and to k — 2, we conclude that
each of fi_; and fi_ is even, hence, 50 is the sum. By the
Principle of Mathematical Induction, f is even for all n > 3.

Let fi = fa =1, fr = fr—1+ fe—o for & > 2 be the Fibonacei sequence.
Which terms of this sequence are even? Prove your answer.

For n > 1, let a, denote the number of ways to express n as the sum
of natural numbers, taking order into account. For example, 3 = 3 =
14141=241=1+2,80a3=4.

(a) [BB] Find the first five terms of the sequence {an}-
(b) Guess and then establish a formula for a,.

For n > 1, let b, denote the number of ways to express n as the sum of 1s
and 2s, taking order into account. Thus, by = 5 because 4 = 1+1+1+1=
242=24+141=14+14+2=1+2+41.

(a) Find the first five terms of the sequence {b. }.
(b) Find a recursive definition for b; and identify this sequence.

(a) [BB] Let a, be the number of ways of forming a line of n people
distinguished only by sex. For example, there are four possible lines
of two people—MM,MW WM WW—so a» = 4. Find a recurrence
relation satisfied by a, and identify the sequence ay, as,a3,...

{b) Let a, be the number of ways in which a line of n people can be
formed such that no two males are standing beside each other. For
example, a3 = 5 because there are five ways to form lines of three
people with no two males beside each other; namely, FFF, MFF, EMF,
FFM, MFM. Find a recurrence relation satisfied by a, and identify
the sequence ay, az, a3, ...
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44. Define the Fibonacei sequence by f = f, = 1, fat1 = fat frey forn = 2.

(a) Prove that ged(frey, fu) =1forallm = 1.

(b) Prove that fr, = fr—mstfm + frvrmfim_y for any positive integers n
and m withmn > m > 1.

{c) Prove that for any positive integers n and m, the greafest common
divisor of f, and f,, is Seedtnm)-

45. Suppose u, and v, are sequences defined recursively by

uy=0,vy =1, and, forn > 1,
Ung1 = 3(tn + vn); Upgq = 3 (un + 3up).
{a) Prove that v, —wu, = 1/4" ! for n > 1,

(b) Prove that u,, is an increasing sequence; that is, uny; > wu, for all

n=1
(¢) Prgvf that v, is a decreasing sequence; that is, va.y < vy for all
n>1.
(d) Prove that u, = z L1 foralln >
37§ Iz for n=l

(This problem is taken from a Portuguese examination designed to test
the level of mathematical knowledge of graduating high school students.
It was reprinted in Focus, the newsletter of the Mathematical Association
of America, 13, no. 3, June 1993, p. 13.)

4.10 DEFINITION. If f: A — A is a function, its powers f* are defined recur-
sively by

fr=f oand, forn>1, PB=Ffofid

46. Suppose f: N — N is defined by

2m/3 ifm=0 (mod3)
flm)=¢ (4m-1)/3 ifm=1 (mod3)
(dm+1)/3 ifm=2 (mod 3).
(a) Prove that f is one-to-one and onto.
(b) [BB] Find the first ten terms of the sequence (1.
(c) Find the sequence f™(2), n > 1.
{d) Find the sequence f™(4), n > 1.
(e) Find the first ten terms of the sequence 7 (8),n>13

e
It is unknown whether or not the terms of this sequence ever repeat,
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47, Define g: N — N by

fiiy == /2 if m is even
BRE= (3m+1)/2 ifm is odd

This function is known as the “3m + 1" function. It is suspected that for
any starting number m, the sequence g(m), g*(m), ¢*(m), ... , eventually
terminates with 1. Verify this assertion for each of the five integers m =
341, 96, 104, 336, and 133.4

48. (For students who have had a course in linear algebra) Give a recursive
definition of the determinant of an n x n matrix, for n > 1.

4.3 Solving Recurrence Relations;
The Characteristic Polynomial

Recursively defined sequences were introduced in the previous section. Given
a particular recurrence relation and certain initial conditions, the reader was
encouraged to guess a formula for the nth term and prove that a guess was
correct. Guessing is an important tool in mathematics and a skill which can be
sharpened through practice, but we now confess that there is a definite procedure
for solving most of the recurrence relations we have encountered so far.

In this section, we describe a procedure for solving recurrence relations of the
form

(10) Qp = rap_1 + San—a + fln)

where r and s are constants and f(n) is some function of n. Such a recurrence
relation is called a second-order linear recurrence relation with constant coeffi-
cients. If f(n) = 0, the relation is called homogeneous. Second-order refers to
the fact that the recurrence relation (10) defines a,, as a function of the two terms
preceding it. The reader should consult more specialized books in combinatorics
for a general treatment of constant coefficient recurrence relations where a, is a
function of any number of terms of the form ca,_;, c€R. °

4While this conjecture has been established for all integers m < 24¢ 2 10'2, it is unknown
whether it holds for all integers! This problem has attracted the interest of many people, some
of whom have offered a sizeable monetary reward for its solution! We refer the interested reader
to the excellent article, “The 3z + 1 Problem and Its Generalizations,” by Jeffrey C. Lagarias,
Amertean Mathematical Monthly, 92 (1985} no. 1, 1-23.

5See, far example, Alan Tucker, Applied Combinatorics, Wiley (1980).
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Examples 5.  Here are some second-order linear recurrence relations with con-
stant coefficients.

® Gn = an-1 +ap—2, the recurrence relation which appears in the definition
of the Fibonacci sequence. This is homogeneous with r = 5 = 1. Notice
that we have modified slightly the recurrence relation Onf1 = 2y + oy
defined in (4.9) so that it is readily seen to be of the type we are considering
here. :
® @p =5an_1 —baq_p+n Herer =5, s =6, f(n) =n.

® an = day—;. This is homogeneous with r = 3, s = 0.

Examples 6. Consider the following two recurrence relations,
® 4y =5ap—1 — dan_3

r ]
® 4y =ap_1an_2+n?

Neither is of interest to us in this section. The first is not second-order while the
second is not linear. 1

Il

With the homogeneous recurrence relation a,,

: : Plp_1 + 8@n_g, which can
be rewritten in the form

Op = Tp—1 — §Qp-2 =0,
we associate the quadratic polynomial
at—rr—g,

which is called the characteristic polynomial of the recurrence relation. Its roots
are called the characteristic roots of the recurrence relation. For example, the
recurrence relation a,, = 5a,,_; — 6a,_» has characteristic polynomial 3:7—5;3—:—6
and characteristic roots 2 and 3.

The following theorem, whose proof is left to the exercises, shows how to solve
any second-order homogeneous recurrence relation with constant coefficients.

4.11 THEOREM. Let z; and z» be the roots of the polynomial 2% — rz — 5. Then the
solution of the recurrence relation a, = ra,_; + 88n_2, > 2 is

Gn = €117 + cozh
an =" +egnz® if 3y = 1y = .

il‘Il-‘T-é.\'C:g

In each case, ¢; and c; are constants determined by initial conditions.




