MATH 205 L01 Winter 2002 Quiz 6 B02 30 Minutes

N	NAME: KEY ID:	
	No Calculators	
1.	Solve the inequality $2x > 3 - 5(2 - x)$.	[20]
	2x > 3 - 10 + 5x	
	7 > 3x	
	$\left[x < \frac{7}{3} \right]$ or $\left[x \in (-\infty, -\infty) \right]$	<u> </u>
_		
2.	Answer T or F only for (a)-(h). In (a)-(d), $a, b, c \in \mathbb{R}$.	[30]
	(a) If $ab > ac$ then $b > c$.	
	(b) If $a < b$, $c < d$, then $a - c < b - d$.	
	(c) If $a < b$, $c \le d$, then $a - c < b - d$.	
	(d) If $a < b$, $c < d$, then $a/c < b/d$.	
	(e) Using the complex numbers \mathbb{C} , all the roots can be found (at in theory) for any polynomial equation $p(x) = 0$.	least T
	(f) The theorem mentioned in (e), known as the Fundamental rem of Algebra, was first proved by N.H. Abel.	Гheo-
	(g) The mathematician al-Khwârizmî, in the 9th century, would been able to solve the equation $x^2 + 6x - 11 = 0$.	haye T
	(h) The quartic equation was first solved by Ferrari.	T
	(i) Name a famous mathematician of the 1700's.	
	(j) Name a famous mathematician of the 1900's.	

3. Using the binomial theorem, expand $(1-x)^5$.

$$(1-x)^{5} = 1 + 5(-x) + 10(-x)^{2} + 10(-x)^{3} + 5(-x)^{4} + (-x)^{5}$$

$$= 1 - 5x + 10x^{2} - 10x^{3} + 5x^{4} - x^{5}$$

[25]

4. Solve the equation $x^2 - 4x + 5 = 0$, and simplify the answer as far as possible. [25]

$$\chi = \frac{4 \pm \sqrt{16 - 20}}{2}$$

$$= \frac{4 \pm 2\lambda}{2}$$

$$= 2 \pm \lambda$$