MATH 205 L01 W 2004 MIDTERM 50 Minutes

N	$\mathbf{I}\mathbf{A}\mathbf{M}$	IE: ID:	
1.	. Each of the following numbers is composite. For each one, find a factor do not have to factor the number completely).		a factor [10]
	(a)	6,111,003	
	(b)	6,111,005	
	(c)	7,121,829	
	(d)	$2^{35} - 1$	
	(e)	$2^{2^5} + 1$ [Hint : remember Euler]	
2.	For	each of the following answer True or False.	[20]
	(a)	The difference of two natural numbers is always an integer.	
	(b)	The difference of two integers is always a natural number. $$	
	(c)	In the modular system \mathbb{Z}/n , subtraction is always possible.	ole.
	(d)	In the modular system \mathbb{Z}/n , division is always possible.	
	(e) The Fundamental Theorem of Arithmetic states that for any two natural numbers m, n , there exist integers $q \ge 0, 0 \le r < m$ such that $n = qm + r$.		
	(f)	All numbers $2^p - 1$, where p is prime, are themselves p	rime.
	(g)	All numbers $2^{2^n} + 1$, $n \ge 0$, are prime.	
	(h) is di	The first known proof that there are infintely many prime use to Euclid.	numbers
	(i)	The Mayan number system uses only three symbols.	
	(j)	Canada has three mathematics institutes.	

- 3. Consider the sequence $F_0 = 0, F_1 = 1, F_2 = 1, F_3 = 2, F_4 = 3,$ $F_5 = 5, \dots$ [20]
 - (a) Write out the next 7 terms of this sequence.

$$F_6 =$$
 ______, $F_7 =$ ______, $F_8 =$ ______, $F_{9} =$ ______, $F_{10} =$ ______, $F_{11} =$ ______, $F_{12} =$ _____.

- (b) This famous sequence is named the _____ sequence.
- (c) Using inductive reasoning and the values $F_0, ..., F_{12}$ as above, make a plausible statment about when F_n is even, i.e. for which values of n will F_n be even.

(d) Prove your statement in (c), using deductive reasoning.

4. (a) Find gcd(42, 303) by factoring the two numbers.

[20]

(b) Find gcd(4403,2686) by any method you wish.

5. In $\mathbb{Z}/31$, (a) Find $7^2 + 8^2$.

[20]

(b) Find 4^{-1} .

(c) Solve the equation 4x + 7 = 2.

6. Carry out the Mayan addition: