MATH 205 L01 W 2005 MIDTERM SOLUTIONS

- 1. For each of the following answer True or False.
 - (a) False, the Goldbach Conjecture is still unproved.
 - (b) False, Gauss' portrait is on the German 10 Mark bill.
 - (c) True
 - (d) False, it is not prime.
 - (e) True
 - (f) True
 - (g) False, Hamilton lived in the 19th century.
 - (h) False, there is also Centre Recherche Montreal and PIMS.
 - (i) True
 - (j) False, the converse is the Four Colour Theorem and is true but not the given statment.
- 2. (a) $5,836,017 = 3 \times 11 \times 176849$
 - (b) $5,836,039 = 11 \times 530549$
 - (c) $4 + 503, 216, 043_{(7)}$ is divisible by 7 since in base 7 it ends in a 0.
 - (d) $2^{39} 1 = (2^3)^{13} 1 = 8^{13} 1 = (8 1)(8^{12} + 8^{11} + \dots + 1)$, so it has 7 as a factor (similarly it has $8191 = 2^{13} 1$ as a factor).
 - (e) $1,547=7 \times 13 \times 17$
- 3. Using mathematical induction, prove $\sum_{j=1}^{n} j^2 = n(n+1)(2n+1)/6$.

Proof: Let \mathcal{P}_n be the above statement.

(a) \mathcal{P}_1 : $LHS = 1^2 = 1$, RHS = 1(2)(3)/6 = 1, LHS = RHS.

1

(b) $\mathcal{P}_n \Rightarrow \mathcal{P}_{n+1}$: Assuming the inductive hypothesis \mathcal{P}_n ,

$$1^{2} + 2^{2} + \dots + n^{2} + (n+1)^{2} = \frac{n(n+1)(2n+1)}{6} + (n+1)^{2} = (n+1)\left[\frac{n(2n+1)}{6} + n + 1\right].$$

Simplifying the RHS gives

$$(n+1)\frac{2n^2+n+6n+6}{6} = (n+1)\frac{2n^2+7n+6}{6} = \frac{(n+1)(n+2)(2n+3)}{6},$$

which proves \mathcal{P}_{n+1} .

- 4. Give the names of three famous twentieth century mathematicians. Here are a few that were mentioned in class: Hilbert, Einstein, Coxeter, Wiles, von Neumann, Haken, Appel, Matiyasevic, Fields. In addition the name of any Fields medalist would be fine, and the entire list was distributed in class.
- 5. Consider the sequence $F_0 = 0, F_1 = 1, F_2 = 1, F_3 = 2, F_4 = 3, F_5 = 5, \dots$
 - (a) Write out the next 7 terms of this sequence. $F_6 = 8, F_7 = 13, F_8 = 21, F_9 = 34, F_{10} = 55, F_{11} = 89, F_{12} = 144.$
 - (b) This famous sequence is named the Fibonacci sequence.
 - (c) Using inductive reasoning and the values $F_0, ..., F_{12}$ as above, make a plausible statement about when F_n is divisible by 4, i.e. for which values of n will F_n be divisible by 4.

Solution: Note that F_0, F_6, F_{12} are the only ones divisible by 4 on the list. A reasonable conclusion is that F_n is divisible by 4 iff n is divisible by 6.

(d) Show that $F_n + F_{n+3} = 2F_{n+2}$, for example (for n = 2) $1 + 5 = 2 \times 3$.

[Hint: You may assume the basic defining relation of this sequence $F_{n+1} = F_n + F_{n-1}$. Show then that $F_{n+2} = 2F_n + F_{n-1}$, derive a similar formula for F_{n+3} , and use these to prove the theorem.]

Several proofs are possible, here is one.

$$F_{n+1} = F_n + F_{n-1},$$

$$F_{n+2} = F_{n+1} + F_n = 2F_n + F_{n-1},$$

$$F_{n+3} = F_{n+2} + F_{n+1} = 3F_n + 2F_{n-1}.$$
Thus $F_n + F_{n+3} = 4F_n + 2F_{n-1} = 2F_{n+2}.$

- 6. (a) Convert the following Mayan number to base 10: It equals 5396.
 - (b) Convert the base 10 number 17,357 to a Mayan number.

•••

••

- (c) Convert the base 10 number 17,357 to base 5. $1023412_{(5)}$
- 7. Solve the equation 34x+10y=1000, where x, y are positive integers.

Using Euclidean algorithm and the Z-process one gets

$$(-2) \times 34 + 7 \times 10 = 2$$

 $(-1000) \times 34 + 3500 \times 10 = 1000$

$$(-1000 + 10s) \times 34 + (3500 - 34s) \times 10 = 1000$$

Take s = 101, then x = 20, y = 32. A couple of other solutions are possible, x = 10 and y = 66, also x = 25 and y = 15.

8. Complete the addition and multiplication tables below for base 5 arithmetic. Then carry out the operations, all in base 5, of $31241-13042,\ 234\times32.$

+	1	2	3	4
1	2	3	4	10
2	3	4	10	11
3	4	10	11	12
4	10	11	12	13

×	2	3	4
2	4	11	13
3	11	14	22
4	13	22	31

$$31241 - 13042 = 13144, \quad 234 \times 32 = 14143$$