Mathematical Induction

Two Proofs

1. Theorem : If \mathcal{G} is a finite tree, then $V_{\mathcal{G}} - E_{\mathcal{G}} = 1$.

Proof by mathematical induction: We use induction on $V_{\mathcal{G}}$. Let \mathcal{P}_n be the statement that for any tree \mathcal{G} with $V_{\mathcal{G}} = n$, $V_{\mathcal{G}} - E_{\mathcal{G}} = 1$, $n \geq 1$.

- (a) \mathcal{P}_1 : If n=1 then the graph \mathcal{G} consists of just a single vertex with no edges. In that case $V_{\mathcal{G}} - E_{\mathcal{G}} = 1 - 0 = 1$.
- $\mathcal{P}_n \Rightarrow \mathcal{P}_{n+1}$. To prove this let \mathcal{G} have n+1 vertices. Since this graph is a finite tree there must be at least one vertex a with a single neighbour b (because any path in a tree cannot double back to a previous vertex, so must ultimately end since the tree is finite). Form a new graph \mathcal{H} by deleting the vertex a and deleting all of the edge ab except for keeping b. Then \mathcal{H} is still connected so also a tree, and it has one less vertex as well as one less edge compared to \mathcal{G} .

By \mathcal{P}_n , one has $V_{\mathcal{H}} - E_{\mathcal{H}} = 1$. It follows that

$$V_{\mathcal{G}} - E_{\mathcal{G}} = (V_{\mathcal{H}} + 1) - (E_{\mathcal{H}} + 1) = V_{\mathcal{H}} - E_{\mathcal{H}} + 1 - 1 = 1 + 1 - 1 = 1$$
.

This proves \mathcal{P}_{n+1} .

2. Theorem: The sum of a geometric progression is given by

$$a + ar + ar^{2} + \ldots + ar^{n} = a \cdot \frac{r^{n+1} - 1}{r - 1}$$
.

Proof by mathematical induction: Let \mathcal{P}_n be the above formula, for $n \ge 0$.

- (a) \mathcal{P}_0 : The LHS (left hand side) equals a. The RHS equals $a \cdot \frac{r^1 - 1}{r + 1} = a \cdot \frac{r - 1}{r + 1} = a = \text{LHS}.$
- (b) $\mathcal{P}_n \Rightarrow \mathcal{P}_{n+1}$.

 $a + ar + ar^{2} + \ldots + ar^{n} + ar^{n+1} = (a + ar + ar^{2} + \ldots + ar^{n}) + ar^{n+1}$ (associative law)

$$= a \cdot \frac{r^{n+1} - 1}{r - 1} + ar^{n+1} = a \cdot \left(\frac{r^{n+1} - 1}{r - 1} + r^{n+1}\right)$$
 (by \mathcal{P}_n)

$$= a \cdot \frac{r^{n+1} - 1}{r - 1} + ar^{n+1} = a \cdot \left(\frac{r^{n+1} - 1}{r - 1} + r^{n+1}\right)$$
 (by \mathcal{P}_n)
$$= a \cdot \left(\frac{r^{n+1} - 1 + r^{n+2} - r^{n+1}}{r - 1}\right)$$
 (common denominator)

$$= a \cdot \frac{r^{n+2} - 1}{r - 1}.$$
 (simplification)

This proves \mathcal{P}_{n+1} , thus completing the mathematical induction.