MATH 205 L01 W 2006 MAPLE ASSIGNMENT

- 1. Evaluate $376^{25} + 4 \times 25^{41}$
- 2. (a) Evaluate 1/53 to 150 digits.
 - (b) Is this a repeating decimal, and if so what is its period?
- 3. (a) Evaluate π to 10 digits (e.g. to 5 digits it equals 3.1416)
 - (b) Evaluate π to 100 digits.
 - (c) What is the 100th digit of π ?
- 4. Find gcd(41447368471823, 769250900212). (Ans. = 10,061)
- 5. Plot $y = x^2(x-5)^2$, -2 < x < 7.
- 6. (a) Convert 56670821 to base 7.
 - (b) Convert 56670821 to a Mayan number.
- 7. (a) Factor 8731448005663793693.
 - (b) Show $2^{101} 1$ is not prime.
 - (c) Show $2^{4253} 1$ is prime (in 1961 it held the record as the largest known prime).
- 8. (a) Find the 200,000th prime number.
 - (b) Find the first prime number larger than 1,000,000.
- 9. (a) Find $F_4 = 2^{2^4} + 1$, the 4th Fermat number, and determine whether it is prime, factors, or unknown.
 - (b) Same for F_5 .
 - (c) Same for F_9 .
 - (d) Same for F_{15} (do not print the number itself, it is so large it takes pages to print).
- 10. (a) Solve $x^3 6x^2 7x + 58 = 0$, using the "fsolve" command.
 - (b) Same using "solve" followed by "evalf(%)."
 - (c) The answers in (a) and (b) are not the same those in (a) are real numbers while those in (b) are complex (involve $I = \sqrt{-1}$). Explain how this is possible.