MATH 205 L01 W 2004 MIDTERM AND SOLUTIONS 50 Minutes

TD

NAME:	ID:
Remark for 2006 : Questions with a *	are not applicable for this year's
review.	
1. Each of the following numbers is compared (you do not have to factor the number)	•
(a) $6,111,003$ 3 is a factor	
(b) 6,111,005 5 is a factor	
(c) 7,121,829 3 and 11 are factors	
(3) 1,122,020 0 0.220 21 0.20 2000	
(d) $2^{35} - 1 := (2^5)^7 - 1 = 32^7 - 1^7 = 32^2 + 32 + 1$, thus $32 - 1 = 31$ is a factorial	
(e) $2^{2^5} + 1$ [Hint : remember Euler factor	r] Euler discovered that 641 is a
2. For each of the following answer True(a) The difference of two natural nu	
(a) The difference of two flatural flu	moors is arways an integer. True

(d*) In the modular system \mathbb{Z}/n , division is always possible. False (e) The Fundamental Theorem of Arithmetic states that for any two

(b) The difference of two integers is always a natural number. False

(c*) In the modular system \mathbb{Z}/n , subtraction is always possible.

natural numbers m, n, there exist integers $q \ge 0, \ 0 \le r < m$ such that n = qm + r. False

(f) All numbers $2^p - 1$, where p is prime, are themselves prime.

False

True

(g) All numbers $2^{2^n} + 1$, $n \ge 0$, are prime.

(h) The first known proof that there are infinitely many prime numbers is due to Euclid.

- (i*) The Mayan number system uses only three symbols. True
- (j) Canada has three mathematics institutes. True
- 3. Consider the sequence $F_0 = 0, F_1 = 1, F_2 = 1, F_3 = 2, F_4 = 3,$ $F_5 = 5, \dots$ [20]
 - (a) Write out the next 7 terms of this sequence.

$$F_6 = 8, F_7 = 13, F_8 = 21, F_9 = 34, F_{10} = 55, F_{11} = 89, F_{12} = 144.$$

- (b) This famous sequence is named the Fibonacci sequence.
- (c) Using inductive reasoning and the values $F_0, ..., F_{12}$ as above, make a plausible statment about when F_n is even, i.e. for which values of n will F_n be even. Answer: F_n is even iff n is divisible by 3.

(d) Prove your statement in (c), using deductive reasoning. Look at the sequence modulo 2 (i.e. even or odd). The pattern is even,odd,odd,even,odd,odd, etc. This pattern must continue since even+odd = odd, odd+odd=even, odd+even=odd. Thus every third Fibonacci number will be even, starting with $F_0 = 0$, proving that F_n is even iff n = 0, 3, 6, 9, 12, ..., i.e. iff n is divisible by 3.

4. (a) Find gcd(42, 303) by factoring the two numbers. [20] $42 = 2 \times 3 \times 7$, $303 = 3 \times 101$. So the gcd = 3.

(b) Find gcd(4403,2686) by any method you wish. Euclidean algorithm best method, answer is gcd = 17