MATH 205 B01, B03

Winter 2005 Quiz 1 30 Minutes

NAME:	ID:
1. Factor $x^3 + 1$.	[20]

2. For each of the following answer True or False. Write "True" or "False", do not use "T,F". In this question a, b, c all denote integers. [20]

(a)
$$a \cdot (b+c) = a \cdot b + a \cdot c$$
.

(b)
$$(a^3 + b^3)^{1/3} = a + b$$
.

(c)
$$a + (b \cdot c) = (a+b) \cdot (a+c)$$
.

(d)
$$(a^3)^5 = a^{15}$$
.

(e) For
$$a, b, c > 0$$
, $\frac{a}{b+c} = \frac{a}{b} + \frac{a}{c}$.

3. Factor 42,471 into a product of primes. [20]

4	T7:1		⊥1	Tr 1: 1	_ 1	⊥ 1	$\alpha \alpha D$	_ C	0.01	200
4	r ma.	11S1119	The	гліспаеап	algorithm,	The	しっしょしょ	OT	2.51	37.7.
т.	- 11101,	451115	OII	Lacifacan	015011011111,	OII	\circ	01	-01	,

[20]

5. Determine whether the graph drawn below admits an Euler path or Euler circuit. If it does indicate the path (circuit) by the sequence of vertices (e.g. XDYCDG...). [20]