MATH 205 L01 W 2006 FINAL EXAMINATION 3 Hours

NAME:	ID:

A standard size formula sheet is allowed, and no other aids.

- 1. For each of the following questions circle T (true) or F (false) in the table below.
 - (a) A connected graph in which each vertex has degree 6 admits an Euler circuit.
 - (b) $\pi = \frac{22}{7}$.
 - (c) 4.9999... < 5
 - (d) The sum of two rational numbers is always rational.
 - (e) The sum of two irrational numbers is always irrational.
 - (f) The mathematics of Ancient Greece concentrated completely on Geometry.
 - (g) Mathematicians and computer scientists have calculated π to about 50,000,000,000 decimal places in order to see whether or not it is irrational.
 - (h) The work of certain mathematicians such as Bolyai, Lobachevsky, and Gödel has had major impact on philosophy.
 - (i) The algebraic system \mathbb{Z}_{211} is a field.
 - (\mathbf{j}) The Fields Medals are named after a Canadian mathematician, John Charles Fields.

Question	(a)	(b)	(c)	(d)	(e)	(<i>f</i>)	(g)	(h)	(<i>i</i>)	(<i>j</i>)
	T	T	T	T	T	T	T	T	T	T
	F	F	F	F	F	F	F	F	F	F

- 2. (a) Which command or commands would you use in MAPLE to find π^5 , to 50 digits?
 - (b) Show the output MAPLE would give for the command $f := 2 * x \wedge 3 3 * x \wedge 2 + 15 * x + 1$;
 - (c) What output would MAPLE give for the command ifactor(408); ?

3. Using base 6 arithmetic, multiply the numbers 352×413 (all numbers in base 6).

- 4. Write a paragraph supporting either opinion (a) or opinion (b) about the influence of computers in mathematics.
 - (a) Computers will have little influence in mathematics besides speeding up long computations.
 - (b) Computers have already had far reaching influence in mathematics, far beyond just extra computational power, and this influence will continue to grow in the future.

5. Let \mathcal{G} be a graph that is a tree. Use mathematical induction to prove that the number of vertices minus the number of edges equals 1, i.e. $V_{\mathcal{G}} - E_{\mathcal{G}} = 1$.

6. Solve the equation 20x = 3 in \mathbb{Z}_{73} .

7. (a) Complete the given Mayan addition.

(b) Convert the base 8 (octal) number $\,$ 6705314 $\,$ to a base 2 (binary) number.

8. (a) Simplify the rational number $(\frac{2}{5} - \frac{8}{3}) \div (\frac{1}{3} - \frac{3}{5})$.

(b) Write the repeating decimal $0.\underline{621}$ as a rational number, simplifying to lowest terms.

9. (a) Consider primes p of the form p = 3m + 1, such as p = 7, 13, 19, 31, 37, 43, We would like to know many non-zero numbers in \mathbb{Z}_p are perfect cubes? For example, in \mathbb{Z}_{19} , the non-zero perfect cubes are 1, 7, 8, 11, 12, 18 (e.g. $1^3 = 1, 2^3 = 8, 3^3 = 8, 4^3 = 7$, etc.). Make the same calculation for a couple of other primes of this form, for example at least for p = 7, 13, and then use inductive reasoning to make a conjecture about how many perfect cubes there will be in general.

(b) Is the conjecture you made in (a) true only for primes of the form p = 3m + 1, or is it true for any prime p > 3? Answer yes or no, and explain.

10. Some parts of mathematics have had the effect of unifying much work that came before it. Name two mathematicians, whose work unified and/or synthesized much previous work, and also specify what the contribution of each mathematician was.