Practice Problems S3

1. Determine whether the following matrices are elementary matrices or not; write down the inverses of the elementary matrices (explain your answer):
(a) $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$,
(b) $\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$,
(c) $\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$,
(d) $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$,
(e) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]$,
(f) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & -1\end{array}\right]$.
2. Find an invertible matrix U such that the product $R=U A$ is the reduced row-echelon form of A if

$$
A=\left[\begin{array}{cccc}
1 & -1 & 3 & 5 \\
3 & -2 & 1 & -2 \\
-1 & 1 & 1 & 3
\end{array}\right]
$$

3. Express the following matrix as a product of elementary matrices:

$$
A=\left[\begin{array}{ll}
5 & 3 \\
2 & 1
\end{array}\right] .
$$

4. Find the matrix of the reflection in the line $y=-x$.
5. Find a rotation or a reflection that is equal to
(a) reflection in the y-axis followed by rotation through $\pi / 2$;
(b) rotation through $\pi / 2$ followed by reflection in the line $y=x$.
6. Given $T\left(\left[\begin{array}{ll}1-2\end{array}\right]^{T}\right)=\left[\begin{array}{ll}3 & 4\end{array}\right]^{T}$ and $T\left(\left[\begin{array}{ll}-2 & 5\end{array}\right]^{T}\right)=\left[\begin{array}{ll}-1 & 4\end{array}\right]^{T}$, find $T\left(\left[\begin{array}{ll}-4 & 3\end{array}\right]^{T}\right)$ if T is a linear transformation.
7. Consider a Markov chain that starts in state 1 with transition matrix $P=\left[\begin{array}{ll}\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3}\end{array}\right]$.
(a) Explain why the chain is regular.
(b) Find the probability that the chain is in state 1 after 2 transitions.
(c) Find the steady-state vector for the chain.

Recommended Problems:

Pages 68-69: 1; 2a, b; 3a; 5a, b; 6 a,b; 7; 8b, c;
Pages 80-81: 1. b, c; 2. a; 3, 4, 5, 9, 10, 12; Pages 101-102: 1, 2, a, c;
Page 101-102: 1. a, b, f, g, h, k, l, m, n, o, p; 5. a, b; 6, 7, 8, 9, 11, 13, 14, 15;

Solutions

1. Exercise.
2. To find such an invertible matrix U that transforms A into its reduced row-echelon form R, we have to bring $\left[A \mid I_{3}\right]$ to $[R \mid U]$:

$$
\left[A \mid I_{3}\right]=\left[\begin{array}{cccc|ccc}
\mathbf{1} & -1 & 3 & 5 & 1 & 0 & 0 \\
3 & -2 & 1 & -2 & 0 & 1 & 0 \\
-1 & 1 & 1 & 3 & 0 & 0 & 1
\end{array}\right] \longrightarrow\left[\begin{array}{cccc|ccc}
\mathbf{1} & -1 & 3 & 5 & 1 & 0 & 0 \\
0 & \mathbf{1} & -8 & -17 & -3 & 1 & 0 \\
0 & 0 & 4 & 8 & 1 & 0 & 1
\end{array}\right]
$$

(Row 2 has been replaced by row2-3xrow1, and Row 3 by $r 3+r 1$)

$$
r 3 \text { by } \frac{r 3}{4} \longrightarrow\left[\begin{array}{cccc|ccc}
\mathbf{1} & -1 & 3 & 5 & 1 & 0 & 0 \\
0 & \mathbf{1} & -8 & -17 & -3 & 1 & 0 \\
0 & 0 & \mathbf{1} & 2 & 1 / 4 & 0 & 1 / 4
\end{array}\right]
$$

$r 1$ by $r 1-3(r 3)$ and $r 2$ by $r 2+8(r 3) \longrightarrow\left[\begin{array}{cccc|ccc}\mathbf{1} & -1 & 0 & -1 & 1 / 4 & 0 & -3 / 4 \\ 0 & \mathbf{1} & 0 & -1 & -1 & 1 & 2 \\ 0 & 0 & \mathbf{1} & 2 & 1 / 4 & 0 & 1 / 4\end{array}\right]$

$$
r 1 \text { by } r 1+r 2 \longrightarrow\left[\begin{array}{cccc|ccc}
\mathbf{1} & 0 & 0 & -2 & -3 / 4 & 1 & 5 / 4 \\
0 & \mathbf{1} & 0 & -1 & -1 & 1 & 2 \\
0 & 0 & \mathbf{1} & 2 & 1 / 4 & 0 & 1 / 4
\end{array}\right]
$$

So, $R=\left[\begin{array}{cccc}\mathbf{1} & 0 & 0 & -2 \\ 0 & \mathbf{1} & 0 & -1 \\ 0 & 0 & \mathbf{1} & 2\end{array}\right]$ and $U=\left[\begin{array}{ccc}-3 / 4 & 1 & 5 / 4 \\ -1 & 1 & 2 \\ 1 / 4 & 0 & 1 / 4\end{array}\right]$. One can
check that $R=U A$. Note that this invertible matrix U is not unique. It depends on the sequence of row operations performed to bring A to its reduced row-echelon form.
3. The matrix $A=\left[\begin{array}{ll}5 & 3 \\ 2 & 1\end{array}\right]$ has determinant $\operatorname{det}(A)=5 \times 1-2 \times 3=$ $-1 \neq 0$. So, A is invertinble. It can be carried to the identity matrix I_{2} by row operations.
Step 1: Substract 2 times row 2 from row 1:

$$
A=\left[\begin{array}{ll}
5 & 3 \\
2 & 1
\end{array}\right] \longrightarrow\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right] \quad\left(I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \longrightarrow F_{1}=\left[\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right]\right)
$$

Step 2: Substract 2 times row 1 from row 2:

$$
\longrightarrow\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right] \quad\left(I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow F_{2}=\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right]\right)
$$

Step 3: Multiply row 2 by -1 :

$$
\longrightarrow\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \quad\left(I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \longrightarrow F_{3}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\right)
$$

Step 4: Substract row 2 from row 1:

$$
\longrightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad\left(I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \longrightarrow F_{4}=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]\right)
$$

We have $A^{-1}=F_{4} F_{3} F_{2} F_{1}$. Therefore, $A=E_{1} E_{2} E_{3} E_{4}$, where E_{1}, E_{2}, E_{3} and E_{4} are elementary matrices given by $E_{1}=F_{1}^{-1}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$, $E_{2}=F_{2}^{-1}=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right], E_{3}=F_{3}^{-1}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ and $E_{4}=F_{4}^{-1}=$ $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
4. Denote by \vec{v}^{\prime} the reflection of $\vec{v}=\left[\begin{array}{l}x \\ y\end{array}\right]$ in the line $y=x$ and $\vec{v}^{\prime \prime}$ the reflection of \vec{v}^{\prime} in the line $y=-x$. We know that $\vec{v}^{\prime}=\left[\begin{array}{l}y \\ x\end{array}\right]$. From the figure, we see that $\vec{v}^{\prime \prime}$ is the reflection of \vec{v}^{\prime} about the origin. Therefore, $\vec{v}^{\prime \prime}=\left[\begin{array}{l}-y \\ -x\end{array}\right]$. It follows that the reflection about the line $y=-x$ is a linear transformation with matrix $\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$. It is the composition of the reflection in the line $y=x$ with the reflection about the origin: $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$.

Figure 1: Reflection of vectors of \mathbb{R}^{2} about the line $y=-x$:
5. (a) The reflection of vectors of \mathbb{R}^{2} in the y-axis is defined by $T\left(\left[\begin{array}{ll}x & y\end{array}\right]^{T}\right)=$ $\left[\begin{array}{ll}-x & y\end{array}\right]^{T}$ and the rotation $R_{\pi / 2}$ is given by $R_{\pi / 2}\left(\left[\begin{array}{ll}x & y\end{array}\right]^{T}\right)=\left[\begin{array}{ll}-y & x\end{array}\right]$. We have: $R_{\pi / 2} \circ T\left(\left[\begin{array}{ll}x & y\end{array}\right]^{T}\right)=R_{\pi / 2}\left(T\left(\left[\begin{array}{ll}x & y\end{array}\right]^{T}\right)\right)=R_{\pi / 2}\left(\left[\begin{array}{ll}-x & y\end{array}\right]^{T}\right)=$ $\left[\begin{array}{cc}-y & -x\end{array}\right]^{T}$. Therefore, the reflection in the y -axis followed by the rotation through $\pi / 2$ is the reflection about the line $y=-x$.
(b) Let $R_{\pi / 2}\left(\left[\begin{array}{ll}x & y\end{array}\right]^{T}\right)$ be the rotation through $\pi / 2$ and $T\left(\left[\begin{array}{ll}x & y\end{array}\right]^{T}\right)=$ $\left[\begin{array}{ll}y & x\end{array}\right]^{T}$ the reflection about the line $y=x$. We have $T \circ R_{\pi / 2}\left(\left[\begin{array}{ll}x & y\end{array}\right]^{T}\right)=$ $T\left(R_{\pi / 2}\left(\left[\begin{array}{ll}x & y\end{array}\right]^{T}\right)\right)=T\left(\left[\begin{array}{ll}-y & x\end{array}\right]^{T}\right)=\left[\begin{array}{ll}x & -y\end{array}\right]^{T}$. It is the reflection in the x-axis.
6. Given that $T\left(\left[\begin{array}{ll}1 & -2\end{array}\right]^{T}\right)=\left[\begin{array}{ll}3 & 4\end{array}\right]^{T}$ and $T\left(\left[\begin{array}{ll}-2 & 5\end{array}\right]^{T}\right)=\left[\begin{array}{ll}-1 & 4\end{array}\right]^{T}, T\left(\left[\begin{array}{ll}-4 & 3\end{array}\right]^{T}\right)$ can be computed if we can express $\left[\begin{array}{ll}-4 & 3\end{array}\right]^{T}$ as a linear combination of vectors $\left[\begin{array}{ll}1 & -2\end{array}\right]^{T}$ and $\left[\begin{array}{ll}-2 & 5\end{array}\right]^{T}$, i.e.; find a and b such that $\left[\begin{array}{ll}-4 & 3\end{array}\right]^{T}=$ $a\left[\begin{array}{ll}1 & -2\end{array}\right]^{T}+b\left[\begin{array}{ll}-2 & 5\end{array}\right]^{T}$. We have:

$$
\left.\begin{array}{rl}
\left\{\begin{array}{ccc}
-4= & a-2 b \\
3 & = & -2 a+5 b
\end{array}\right. & \Longrightarrow
\end{array} \begin{array}{cc}
1 & -2 \\
-2 & 5
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
-4 \\
3
\end{array}\right] ~\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 \\
-2 & 5
\end{array}\right]^{-1}\left[\begin{array}{c}
-4 \\
3
\end{array}\right],
$$

i.e., $a=-14$ and -5 . It follows that
$T\left(\left[\begin{array}{ll}-4 & 3\end{array}\right]^{T}\right)=a T\left(\left[\begin{array}{ll}1 & -2\end{array}\right]^{T}\right)+b T\left(\left[\begin{array}{ll}-2 & 5\end{array}\right]^{T}\right)=-14\left[\begin{array}{ll}3 & 4\end{array}\right]^{T}-5\left[\begin{array}{ll}-1 & 4\end{array}\right]^{T}=\left[\begin{array}{ll}-37 & 76\end{array}\right]^{T}$.
7. This Markov chain with transition matrix $P=\left[\begin{array}{cc}\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3}\end{array}\right]$, starting in state 1, has initial state vector $S_{0}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}$.
(a) Since $P^{1}=P$ is the transition matrix with only nonzero entries, all powers of P also have nonzero entries. So, at least one power of P has nonzero entries, i.e., the chain is regular.
(b) $S_{m+1}=P S_{m}=P^{m+1} S_{0}$, where $S_{0}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}$. So, $S_{1}=P S_{0}=$ $\left[\begin{array}{cc}\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3}\end{array}\right]\left[\begin{array}{c}1 \\ 0\end{array}\right]=\left[\begin{array}{c}\frac{1}{3} \\ \frac{2}{3}\end{array}\right]$ and the state-vector S_{2} after two transitions is $S_{2}=P S_{1}=\left[\begin{array}{cc}\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3}\end{array}\right]\left[\begin{array}{c}\frac{1}{3} \\ \frac{2}{3}\end{array}\right]=\left[\begin{array}{c}\frac{5}{9} \\ \frac{4}{9}\end{array}\right]$. So, the probability for the chain to be in state 1 after 2 transitions is $\frac{\mathbf{5}}{\mathbf{9}}$.
(c) Since the chain is regular, it has a steady state-vector which is the only probability vector S solving the homogeneous system $\left(I_{2}-P\right) X=0$.

$$
I_{2}-P=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{cc}
\frac{2}{3} & -\frac{2}{3} \\
-\frac{2}{3} & \frac{2}{3}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{3} & \frac{2}{3} \\
\frac{2}{3} & \frac{1}{3}
\end{array}\right] \longrightarrow\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]
$$

$\left(r_{1} \rightarrow 3 \times r_{1} / 2\right.$ and $\left.r_{2} \rightarrow r_{1}+r_{2}\right)$. So, the homogeneous system $\left(I_{2}-P\right) X=0$ has general solution $X=t[11]^{T}, t \in \mathbb{R}$, In particular the steady state-vector (which is a solution to the homo. syst.) has the form $S=t\left[\begin{array}{ll}1 & 1\end{array}\right]$, for some $t \in \mathbb{R}$. Since S is a probability vector, the sum of its entries is 1 , therefore $t=1 / 2$ and $S=\frac{1}{2}\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$.

