Practice Problems S5

1. Let A be an $n \times n$ matrix and $0 \neq k \in \mathbb{R}$. Prove that $\lambda \in \mathbb{R}$ is an eigenvalue of A if and only if $k \lambda$ is an eigenvalue of $k A$.
2. By inspection, find the eigenvalues of the following matrices:
(a) $A=\left[\begin{array}{ccc}3 & 1 & 4 \\ 0 & -2 & 2 \\ 0 & 0 & 5\end{array}\right]$; (b) $B=\left[\begin{array}{ccc}-2 & 0 & 0 \\ 1 & 2 & 5 \\ 4 & 0 & 4\end{array}\right]$.
3. Compute $P^{-1} A P$ and then A^{n} if $A=\left[\begin{array}{ll}6 & -5 \\ 2 & -1\end{array}\right]$ and $P=\left[\begin{array}{ll}5 & 1 \\ 2 & 1\end{array}\right]$.
4. Diagonalize the following matrices (i.e., find an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix if
(a) $A=\left[\begin{array}{lll}-4 & 1 & 4 \\ -2 & 1 & 2 \\ -3 & 1 & 3\end{array}\right]$; (b) $A=\left[\begin{array}{ccc}3 & 1 & 1 \\ -4 & -2 & -5 \\ 2 & 2 & 5\end{array}\right]$.
5. For which values of k does the matrix $A=\left[\begin{array}{ll}2 & 3 \\ k & 4\end{array}\right]$ have an eigenvalue of multiplicity 2 .
6. Determine whether the following matrices are diagonalizable or not:
(a) $A=\left[\begin{array}{cc}1 & 2 \\ 3 & -4\end{array}\right]$;
(b) $B=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$;
(c) $C=\left[\begin{array}{lll}1 & 0 & 3 \\ 2 & 1 & 2 \\ 0 & 0 & 2\end{array}\right]$.
7. Solve the following linear recurrences:
(a) $x_{k+2}=2 x_{k}-x_{k+1}$, where $x_{0}=1$ and $x_{1}=2$;
(b) $x_{k+3}=-2 x_{k}+x_{k+1}+2 x_{k+2}$, where $x_{0}=1$ and $x_{1}=2=x_{2}$.
