Practice Problems S7 (Vector Geometry)

1. Let $P_{1}(2,1,-2)$ and $P_{2}(1,-2,0)$ be points in \mathbb{R}^{3}.
(a) Find the parametric equations of the line through P_{1} and P_{2};
(b) Find the coordinates of the point P that is $1 / 4$ of the way from P_{1} to P_{2}.
2. Find the point of intersection P between the lines (if they are concurrent):

$$
\left\{\begin{array} { c }
{ x = 3 + t } \\
{ y = 2 + 3 t } \\
{ z = - 1 - 3 t }
\end{array} \text { and } \quad \left\{\begin{array}{c}
x=1-s \\
y=1+2 s \\
z=3+s
\end{array} .\right.\right.
$$

3. Find the equation of the plane passing through the point $P(3,-7,5)$ and is perpendicular to the line $\left\{\begin{array}{c}x=2+6 t \\ y=-5-6 t \\ z=3+5 t\end{array}\right.$
4. Find the equation of the plane through the points $A(3,-7,1), B(2,0,-1)$ and $C(1,3,0)$. Check if the point $D(5,1,1)$ lies on this plane.
5. Determine whether the plane $2 x-3 y+z=1$ contains the line $\left\{\begin{array}{c}x=3+2 t \\ y=2 \\ z=1-4 t\end{array}\right.$.
6. Find the line of intersection of the planes $\left(\pi_{1}\right) \equiv 3 x+5 y+4 z=5$ and $\left(\pi_{2}\right) \equiv x+2 y+3 z=2$.
7. Find the shortest distance from the point $P(1,1,1)$ to the line $\left\{\begin{array}{c}x=3+t \\ y=9 \\ z=10-4 t\end{array}\right.$. Which point on this line is closest to P ?
8. Find the shortest distance from the point $P(4,1,9)$ to the plane $x-4 z=$ 2. Which point on this plane is closest to P ?
9. Let $\vec{u}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right], \vec{v}=\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right], \vec{w}=\left[\begin{array}{c}-3 \\ 1 \\ 2\end{array}\right]$ be vectors in \mathbb{R}^{3}. Compute:
(a) $\vec{v} \times \vec{w}$ and then $\vec{u} \times(\vec{v} \times \vec{w})$;
(b) $(\vec{u} \cdot \vec{w}) \vec{v}-(\vec{u} \cdot \vec{v}) \vec{w}$.
10. Find the areas of the sides of the parallelepiped determined by the vectors $\overrightarrow{A B}, \overrightarrow{A C}$, and $\overrightarrow{A D}$, where A, B, C and D are the points in Problem 4. What is the volume of this parallelepiped?

Recommended Problems:

Pages 165-167: 1 a, c; 3 a; 4 a; 5, 7 a; 9 a, b; 15, 20, 24
Pages 177-179: 1 a; 2 a, b; 3 a; 6, 8, 9, 10 a; 11 a; 12, 13, 14, 15, 16 a; 18, 19, 24 a
Page 185: 3 a; 4 a; 5 a.

Solutions

1. (a) If $P(x, y, z)$ is a point on the line though $P 1$ and $P 2$, then there is $t \in \mathbb{R}$ such taht $\overrightarrow{P 1 P}=t \overrightarrow{P_{1} P_{2}}=t\left[\begin{array}{lll}-1 & -3 & 2\end{array}\right]^{T}$. Thus, $\left\{\begin{array}{c}x=2-t \\ y=1-3 t \\ z=-2+2 t\end{array}\right.$. (b) $\overrightarrow{P 1 P}=\frac{1}{4} \overrightarrow{P_{1} P_{2}}$. This gives $P(7 / 4,1 / 4,-3 / 2)$.
2. Solve the following system of linear equations $\left\{\begin{array}{c}x=3+t=1-s \\ y=2+3 t=1+2 s \\ z=-1-3 t=3+s\end{array}\right.$ to get $t=-1=s$. The point of intersection P has coordinates $P(2,-1,2)$.
3. The plane has normal vector $\vec{v}=\left[\begin{array}{lll}6 & -65\end{array}\right]^{T}$ (direction vector of the given line). So, the scalar equation is $6(x-3)-6(y+7)+5(z-5)=0$.
4. If $P(x, y, z)$ is a point on the plane through A, B and C, then the equation of the plane is

$$
\begin{aligned}
0 & =\overrightarrow{A P} \cdot(\overrightarrow{A B} \times \overrightarrow{A C})=\operatorname{det}(\overrightarrow{A P}, \overrightarrow{A B}, \overrightarrow{A C})=\left|\begin{array}{ccc}
x-3 & y+7 & z-1 \\
2-3 & 0+7 & -1-1 \\
1-3 & 3+7 & 0-1
\end{array}\right| \\
& =13(x-3)+3(y+7)+4(z-1)
\end{aligned}
$$

Replacing x, y and z by the coordinates of $D(5,1,1)$, we have: $13(5-$ $3)+3(1+7)+4(1-1)=26+24=50 \neq 0$. Therefore this plane does not contain the point D.
5. A line can be completely on the given plane, parallel to the plane or can intersect the plane at one point. Replace the parametric expressions of x, y and z into the equation of the plane. If one gets a consistent equation in the parameter t, then the line intersects the plane. If the parameter t is cancels out, then the line is contained in the plane if the equation is consistent, otherwise, the line is parallel to the plane. With $x=3+2 t, y=2$ and $z=1-4 t$, we have: $2(3+2 t)-3(2)+(1-4 t)=1$, i.e. $1=1$, this implies that the plane contains the line.
6. Solve $\left\{\begin{array}{c}3 x+5 y+4 z=5 \\ x+2 y+3 z=2\end{array}\right.$ to find the line of intersection $\left\{\begin{array}{l}x=7 t \\ y=1-5 t . \\ z=t\end{array}\right.$
7. The line has direction vector $\vec{d}=\left[\begin{array}{lll}1 & 0 & -4\end{array}\right]^{T}$. Choose arbitrarily a point $P_{0}=(3,9,10)$ on the line. Project the vector $\overrightarrow{P_{0} P}=\left[\begin{array}{ll}-2 & -8\end{array}-9\right]^{T}$ on $\vec{d}: \operatorname{proj}_{\vec{d}} \overrightarrow{P_{0} P}=\frac{\overrightarrow{P_{0} P} \cdot \vec{d}}{\|\vec{d}\|^{2}} \vec{d}=\frac{-2+36}{17} \vec{d}=2 \vec{d}$. The shortest distance is $\left\|\overrightarrow{P_{0} P}-\operatorname{proj}_{\vec{d}} \overrightarrow{P_{0} P}\right\|=\left\|\overrightarrow{P_{0} P}-2 \vec{d}\right\|=\sqrt{4^{2}+8^{2}+1^{2}}=9$. The closest point $Q(x, y, z)$ is given by $\overrightarrow{P_{0} Q}=\operatorname{proj}_{\vec{d}} \overrightarrow{P_{0} P}$. So, $Q(5,9,2)$.
8. The plane has normal vector $\vec{n}=\left[\begin{array}{lll}1 & 0 & -4\end{array}\right]^{T}$. Choose arbitrarily a point $P_{0}(6,0,1)$ on the plane. Project the vector $\overrightarrow{P_{0} P}=\left[\begin{array}{lll}-2 & 1 & 8\end{array}\right]^{T}$ on \vec{n} : The shortest distance is given by $\left\|\operatorname{proj}_{\vec{n}} \overrightarrow{P_{0} P}\right\|=\|-2 \vec{n}\|=2 \sqrt{17}$. The closest point point $Q(x, y, z)$ is given by $\overrightarrow{Q P}=\operatorname{proj}_{\vec{n}} \overrightarrow{Q P}=-2 \vec{n}$. So, $Q(6,1,1)$.
9. (a)

$$
\begin{aligned}
\vec{v} \times \vec{w}= & \left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & -2 & 3 \\
-3 & 1 & 2
\end{array}\right|=\left|\begin{array}{cc}
-2 & 3 \\
1 & 2
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
1 & 3 \\
-3 & 2
\end{array}\right| \vec{j} \\
& +\left|\begin{array}{cc}
1 & -2 \\
-3 & 1
\end{array}\right| \vec{k}=-7 \vec{i}-11 \vec{j}-5 \vec{k}=\left[\begin{array}{c}
-7 \\
-11 \\
-5
\end{array}\right] .
\end{aligned}
$$

$$
\text { And } \vec{u} \times(\vec{v} \times \vec{w})=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 2 & 2 \\
-7 & -11 & -5
\end{array}\right|=12 \vec{i}-9 \vec{j}+3 \vec{k}=
$$

$$
\left[\begin{array}{c}
12 \\
-9 \\
3
\end{array}\right]
$$

(b) $(\vec{u} \cdot \vec{w}) \vec{v}-(\vec{u} \cdot \vec{v}) \vec{w}=(-3+2+4) \vec{v}-(1-4+6) \vec{w}=\left[\begin{array}{c}12 \\ -9 \\ 3\end{array}\right]$.

Note: In general, $\vec{u} \times(\vec{v} \times \vec{w})=(\vec{u} \cdot \vec{w}) \vec{v}-(\vec{u} \cdot \vec{v}) \vec{w}$. But $\vec{u} \times(\vec{v} \times \vec{w}) \neq(\vec{u} \times \vec{v}) \times \vec{w}$, i.e., the cross product is not associative.
10. The parallelepiped has six sides (2 times the parallelograms determined by the vectors). So, these sides have areas: $\|\overrightarrow{A B} \times \overrightarrow{A C}\|=$ $\| \xrightarrow[{[1} 3]{13} 34]^{T}\|=\sqrt{194},\| \overrightarrow{A B} \times \overrightarrow{A D}\|=\|\left[\begin{array}{lll}16 & -4 & -22\end{array}\right]^{T} \|=\sqrt{756}$ and $\|\overrightarrow{A C} \times \overrightarrow{A D}\|=\left\|[8-2-36]^{T}\right\|=2 \sqrt{341}$. The volume of this parallelepiped is $V o l=|\overrightarrow{A D} \cdot(\overrightarrow{A B} \times \overrightarrow{A C})|=|\operatorname{det}(\overrightarrow{A D}, \overrightarrow{A B}, \overrightarrow{A C})|=50$.

