Practice Problems S7 (Vector Geometry)

1. Let $P_{1}(2,1,-2)$ and $P_{2}(1,-2,0)$ be points in \mathbb{R}^{3}.
(a) Find the parametric equations of the line through P_{1} and P_{2};
(b) Find the coordinates of the point P that is $1 / 4$ of the way from P_{1} to P_{2}.
2. Find the point of intersection P between the lines (if they are concurrent):

$$
\left\{\begin{array} { c }
{ x = 3 + t } \\
{ y = 2 + 3 t } \\
{ z = - 1 - 3 t }
\end{array} \text { and } \quad \left\{\begin{array}{c}
x=1-s \\
y=1+2 s \\
z=3+s
\end{array} .\right.\right.
$$

3. Find the equation of the plane passing through the point $P(3,-7,5)$ and is perpendicular to the line $\left\{\begin{array}{c}x=2+6 t \\ y=-5-6 t \\ z=3+5 t\end{array}\right.$
4. Find the equation of the plane through the points $A(3,-7,1), B(2,0,-1)$ and $C(1,3,0)$. Check if the point $D(5,1,1)$ lies on this plane.
5. Determine whether the plane $2 x-3 y+z=1$ contains the line $\left\{\begin{array}{c}x=3+2 t \\ y=2 \\ z=1-4 t\end{array}\right.$.
6. Find the line of intersection of the planes $\left(\pi_{1}\right) \equiv 3 x+5 y+4 z=5$ and $\left(\pi_{2}\right) \equiv x+2 y+3 z=2$.
7. Find the shortest distance from the point $P(1,1,1)$ to the line $\left\{\begin{array}{c}x=3+t \\ y=9 \\ z=10-4 t\end{array}\right.$. Which point on this line is closest to P ?
8. Find the shortest distance from the point $P(4,1,9)$ to the plane $x-4 z=$ 2. Which point on this plane is closest to P ?
9. Let $\vec{u}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right], \vec{v}=\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right], \vec{w}=\left[\begin{array}{c}-3 \\ 1 \\ 2\end{array}\right]$ be vectors in \mathbb{R}^{3}. Compute:
(a) $\vec{v} \times \vec{w}$ and then $\vec{u} \times(\vec{v} \times \vec{w})$;
(b) $(\vec{u} \cdot \vec{w}) \vec{v}-(\vec{u} \cdot \vec{v}) \vec{w}$.
10. Find the areas of the sides of the parallelepiped determined by the vectors $\overrightarrow{A B}, \overrightarrow{A C}$, and $\overrightarrow{A D}$, where A, B, C and D are the points in Problem 4. What is the volume of this parallelepiped?

Recommended Problems:

Pages 165-167: 1 a, c; 3 a; 4 a; 5, 7 a; 9 a, b; 15, 20, 24
Pages 177-179: 1 a; 2 a, b; 3 a; 6, 8, 9, 10 a; 11 a; 12, 13, 14, 15, 16 a; 18, 19, 24 a
Page 185: 3 a; 4 a; 5 a.

