MATHEMATICS 221 L05 FALL 2007 MIDTERM EXAMINATION Friday, November 2, 2007 Duration: 50 minutes

I.D.#		

I agree that this paper may be placed at the front of the classroom for pick-up.

Please initial either \mathbf{YES}

NO

or

NO CALCULATORS ALLOWED ANSWER ALL QUESTIONS SHOW ALL WORK

LAST NAME_

[5] **1**. Solve the system:

[5] **2.** Let $A = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$. Express A^{-1} as a product of elementary matrices.

LAST NAME_____FIRST NAME____

[5] **3**. Let A be a square matrix. Prove that if A^2 is invertible then A is invertible.

[5 4. Given that
$$A^{-1} = \begin{bmatrix} 7 & 2 & -6 \\ -3 & -1 & 3 \\ 2 & 1 & -2 \end{bmatrix}$$
. Find $adjA$.

LAST NAME_

FIRST NAME_

[10] 5. Given that A and B are 3×3 matrices such that det A = -1 and det B = 2. (a) Find det $(2(B^{-1})^T A^3)$.

(b) Find det $(adjA - A^{-1})$.

[5] **6.** Let $A = \begin{bmatrix} 1 & x & x \\ x & 1 & x \\ x & x & 1 \end{bmatrix}$. Find all values of the number x so that A is not invertible.

[5] 7. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 0 \\ y^2 \end{bmatrix}$ for any real numbers x and y. Show that T is not a linear transformation.