SOLUTIONS
MATH 211 PRACTICE PROBLEMS

a)r;=—1—-2r—3s—t,xo=r,x3=2+s—t, x4 =35, x5 =t and x5 = 3.

)
b)xy=—-1—-Ts—t, x29=0,23 =35, x4 =3+ 3t, x5 =t and xg = 0.

c) rank is 2 if a = 5, and rank is 3 if a # 5.

(
(
2. (a) rank is 3 (b) rank is 2
(
(d) rank is 2 if @ = 1, and rank is 3 if @ # 1.

3. The rank r of the augmented matrix satisfies » < 5 because there are 5 equations. Hence

there are 7 — r > 2 parameters by Theorem 3 §1.2, and so there is more than one solution.

4. The system may have no solution. So assume it is consistent. The rank of the augmented
matrix is 7 = 4, and there are n = 4 variables, so there are n — r = 0 parameters. In other

words, the solution is unique.

5. The solutions are the coordinates of points lying on all three planes. If the three planes are
all parallel, there is no solution unless they all coincide, in which case there are infinitely
many solutions (any point on the common plane). If two of the planes are not parallel, they
intersect in a line. If this line is not parallel to the third plane, it meets it in a unique solution;
otherwise the line is either in the third plane (infinitely many solutions) or it does not meet

the third plane (no solution).

6. If A — B by a row interchange, the reverse is the same interchange.
If A — B by multiplying row k by ¢ # 0, the reverse is multiplying row k by 1/c.

If A — B by adding c times row i to row j, the reverse is subtracting ¢ times row i from row
7

b,‘ + ¢ bl + ¢ bz + ¢ bz + ¢ C; a; a;
7. c; + a; — a; — bz — Qai — a; — a; — C; — bz
a; + bl a; + bl a; + bl bz bl bl C;

8. x2+y2—3x—%y—§:0.

9. f(z) =1—2x + 322

10.
b)Ifa= -3, 21 =9 2o =—btand x5 =1t; ifa+# -3, 11 =1x9=23=0.
)Ifa# 0 and a # —1, then x; = 25 = x3 = 0;

If a =0 then 3 =0, xr1 = —t and x5 = t;

If a = —1 then 1 = 3t, 19 = —2tand x3 = t.
(d) If a # 1 and a # —1, then x; = x5 = x5 = 0;

If a =1 then 23 =0, r1 = —t and x5 = t;

a)lfa=2 2=t zo=tandzg=t; ifa#2, 01 =129=23=0.
c

(
(
(

If a=—1then x1 =t, x5 = 0and z3 = t.
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11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

(a) If zA 4+ yB + zC = 0 then equating corresponding entries gives

x + 2z =0
-r + 3y + z = 0
y + 2z =0

The only solution is * = y = z = 0, so {A, B, C} is linearly independent.

(b) 3 [ _11 1 +2 [ g 1 -3 l 1 1 = l 8 1 so these matrices are not linearly independent.

Given points (z1,y;1) and (x2,y2), the line with equation ax + by + ¢ = 0 passes through these
points if axy + by; + ¢ = 0 and axs + bys + ¢ = 0. These are two homogeneous equations in
the three variables a, b and ¢, and so has a nontrivial solution by Theorem 1 § 1.3. The line
corresponding to this solution will contain both points.

Given points (z1,y1, 21), (%2, y2, 22), and (x3, y3, 23), the plane with equation az+by+cz+d =
0 passes through these points if azy + bys + cz1 +d = 0, axy + by; + cz3 +d = 0 and
axy + by, + cz3 +d = 0. These are three homogeneous equations in the four variables a, b, ¢
and d, and so has a nontrivial solution by Theorem 1 § 1.3. The plane corresponding to this
solution will contain all three points.

zyzT=[1+3t 1-5¢ t]'.
10 2 1
01 -1 =3
00 0 O
ey T =1 4 YT

[Ty 2o x3xg x5 )T =2+s—5t s —3—2t 2t t]T.

1 -1 2 a 1 -1 2 a 1 0 1 b—a
2 -1 3 b|—|10 1 -1 b—-2a|—1]01 -1 b—2a
-1 2 -3 ¢ 0 1 -1 c+a 00 0 c+3a—-2b

Hence if ¢ # b — 3a there is no solution.

If ¢ = b — 3a there are infinitely many solutions: [z y 2]T =[b—a—t b—2a+t t]7.

1 -1 2 a 1 -1 2 a 1 -1 2 a
21 -13|—10 3 -5 3-2a|—|0 3 -5 3—2a
1 5 =81 0 6 =10 1-a 0 0 0 3a-5

Hence if a # % there is no solution.
If a = g there are infinitely many solutions.
1 0 -1 2

01 -1 3
many solutions: x =24+t y=3+1, 2 =1t.

False. If l 1 is the augmented matrix, there is no row of zeros but infinitely

The reduction of the augmented matrix to reduced row-echelon form is:



22.

23.

24.

25.

1 -1 2 2 3 —4 1 0 0 0 -2 -1
-2 3 -6 -3 —11 11 01 -20 -5 3
-1 2 -4 1 -8 7 00 0 1 0 0
0 1 -2 3 -5 3 00 0 0 O 0
Hence |11 2o x3 14 z5]7 =[-14+2t 3+2s+5t s 0 ¢t]7.
1 010 -2 =2
0100 O 3
0001 1 6
108 s a8
(a) The reduced form for Ais | 0 1 3 —3 | so X = . =s| | Tt
000 O ; 0 1
1 2304 0 3s — 4t 3 —4
00 120 y L 0
(b) The reduced form for A is 00 00 1 so X = —2t =s| 0 |+¢t| =2
t 0 1
0O 0 00O 0 0 0
2 3 4 1
Here A = [A; A3 A3 Ag)=1]1 1 1 1 |, and B is a linear combination of the columns
01 2 -1

Ay, As, As, and Ay if and only if AX = B for some X, that is if the system AX = B has a
solution. Moreover, if X = [z1 x5 73 74]7 then B = 21 A; + 2045 + 1343 + 14 A4.

3 234 1 |4
(a) f B=| 1 | the augmented matrix for thesystem AX = Bis[A|B]=|1 1 1 1 |1
2 012 —-1]2

1

10 -1 2 | -1

and this hasreduced form | 0 1 2 —1 9 | . Hence there are solutions X = | *2 ,in
Zs3
00 0 O 0
Ty
Ty —1+4+s—2t
fact the general solution is X = iz = 2- 288 +e .So B =21A1+29As+1x3A3+ 14 A4
3
Ty t

for any values of s and ¢ (check this). Taking s = ¢t = 0 we have a particular linear combination
B=—-A+2A,.
1 234 1 |1
(b)If B= | 0 | the augmented matrixis[A| B]=|1 1 1 1 |0 | and this has reduced
0 012 —-11|0
-1 2 |0
2 —1 ] 0 | and so has no solution. So this B is not a linear conbination of
0 0 |1
Ay, As, As, and Ay

10
form | 0 1
00

Let A=[A; Ay --- A,] where A, is column i of A for each i, and write X = [z; @9 -+ z,]7

and Y = [y; 92 -+ yu]T. Then



26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

AX = 21 A) + 2As + - 2 Ay and AY = g1 Ay +ypAg + - F YAy,
Now observe that

X+Y=[w1+y 2ot+ys - 2 +ya)7.

Hence
AX+Y) = (e14+y)Ar+ (e +y2)As+ -+ (2 + yn) As
= (141 +y1 A1) + (2245 + 92 As) + -+ + (2 Ay + YnAn)
= (1141 + 22A0 + - 3, Ay) + (1AL H1pAs + -+ ynAy)
= AX + AY.
Let X = | © |. Much as in Example 14, T(X) = vy 01 ¥ | = AX where
Y —T -1 0 Y
1

a0,

LetX—[;j}.ThenT(X)—[Z]—l? éHﬂ_AthereA_H (1)]

The (3,2)-entry is the dot product of row 3 of A with column of B, that is 7-4 4+ (=3) -1+
4-(=2) =17.

(a) A=4B; (b) A=-2BT.

Every 1 x 3 matrix A can be written in the form A = { a b c } for some scalars a,b and c.
Hence

A=la 0 0]+[0 b 0]+[00 c]=a[1 0 0]+b[0 1 0]+c[0 0 1]

a 1 0 0
IfA=|b|isad3x1matrixthen A=a | 0 | +b| 1 | +c| 0| in the same way.

c 0 0 1
If A = —A then adding A to both sides gives 24 = A+ (—A) = 0. As 2 # 0, this means
A=0.
Suppose A is symmetric, that is AT = A. Then (cA)T = ¢ AT = cA using Theorem 4 §1.1,

that is cA is symmetric.
(A" = ((-1)A)" = (-1) AT = — AT by Theorem 4 §1.1.

If A and B are symmetric then AT = A and BT = B. Hence Theorem 4 §1.1 and Exercise 6
give (A— B)T = (A+ (—=B))T = AT + (-B)T = AT + (-B") = AT — BT = A — B. Hence

A — B is also symmetric.



36.

37.

38.

39.

40.

41.

42.

43.

44.

(a) If A is skew symmetric and 2 x 2, write A = @ 2 for some scalars a, b, ¢ and d. Since
AT = —Awehave | ¢ ¢ =—|¢ b | ¢ b Equating entries gives a = —a

b d c d —c —d | ’
¢ = —band d = —d. Hence A = _Ob 8 for some scalar b.

(b) If A and B are skew-symmetric then AT = —A, and BY = —B. Hence (A + B)T =
AT+ BT = —A+ (—B) = —(A+ B), so A+ B is skew symmetric. Similarly, (cA)” = ¢ AT =
c¢(—A) = —(cA) shows that cA is skew-symmetric for any scalar c.
As in the Hint: $(A+A")+3(A—A") = A+ AT+ AL AT = A If we take S = (A4 AT)
and W = (A — AT) then A =S+ W and:

ST = Z(AT + ATT) = 2 (AT + A) = S, so S is symmetric,
W =1(AT — ATT) = (AT — A) = =W, so W is skew-symmetric.

(a) 3AB + 4BA.
(b) AB — BA
(¢) CA’C — ABCB
(d) 0
- 2 | 2
If A= Z Z then 0 = A? = (Czlb::—_g))d ‘Zfizgl . Hence a® +* = 0 = b? + d? and it

follows (since a, b and d are real numbers) that a = b = d = 0. Hence A = 0.

r | @04+ aay 4+ bby 4 co
AAT = 2 2 2
| aar +bby +cci ay + 07+

Since A has real entries, this means a =b=c¢ =0 and a; = b; = ¢; = 0; that is A = 0.

] .So AAT = 0 means a®>+b*+c*> = 0 = a3 +b?+c3.

Write B = AAT. Using Theorem 1 §1.4, we get BT = (AAT)T = ATT AT = AAT = B. Hence
B is a symmetric matrix.

We are given that CA = AC and CB = BC. Hence
C(2A—-3B) =2CA—-3CB =2AC —-3BC = (2A—-3B)C.
Hence 2A — 3B commutes with C too.

We use Theorem 3 §1.5.

R SR R tH R |

1 0 1 -1 4 —1 4 5
T T
Hence A —3[2 _114—[ 1—[5 _1‘|,SOA—A —[_1 _1].

We use Theorem 3 §1.5.

-1 -1
1 —
e G I B B et A



45.

46.
47.

48.

49.

950.

ol.

52.

53.

54.

95.

3 -1 10 3 -1 -2 1
ThusQIA—[l 0 ]A{[O 1]—[1 0 ]}A[—l 1]A.Hence

a=[ 2] a4 D=2 ]

If it happens that A~! exists, then AX = 0 gives A7'AX = A710, that is /X = 0, that is
X = 0. This is contrary to our assumption, so A~! does not exist.

U is invertible because detU = 15+ 28 # 0. So AU = 0 gives A = Al = AUU! =0U~! = 0.

Since B is invertible, we have A = (AB)B~!, and this is invertible by Theorem 3 §1.5 because
both AB and B~ are invertible.

Since AB = cI, multiplying by % gives A(:B) = I. Hence (2B)A = I by Corollary 2 of
Theorem 5 §1.5. Multiplying by ¢ gives BA = cI, as required. The result is false if ¢ = 0,

even for 2 X 2 matrices: IfA:[O 1]andB: [(1) (1)] then AB =0 but BA # 0.

0 0

Write the equation A% —2A4? 4+ 54+ 61 = 0 in the form A(A? —2A+5) = —6/s0o A- () = I.
Similarly $(—A? + 24 —5)- A = I. These equations show that A is invertible and that
At =3(-A*4+2A-5).

Showing that A=! = A is the same as showing that A? = I. Since we have E? = F, we have

A* = (I -2E)? = (I —-2E)I —2E)=1*>-2IFE —2E] +4F* =] —2E — 2E + 4F = I.

-8 3 2
-3 11

Using the matrix inversion algorithm (or otherwise), we have A™! =

—10 4 3]

If row 1 of A consists of zeros then YA =0 where Y =[100 --- 0]. Hence if A™! exists then
Y =YI=YAA'=0A"! =0, a contradiction. So A~! does not exist.

To solve AX = B, left multiply both sides by A~ to get A7*AX = A~!'B, thatis X = A~ B.
So every solution (if there is one) must equal A~'B. But X = A™!'B is indeed a solution

because AX = A(A™'B) =1B = B.

a+2x b+2y c+2z a+2x b+2y c+2z
det | z+p y+q z47r | =3det| z+p y+q z+7r
3p 3q 3r P q r
a+2r b+2y c+2z a b c a b c
= 3det x Y z Sdet{x Y z] Sdet{p q r] = —15.
p q r p qr r Yy =
1 ¢ 0 1 0 0 L9 o
Compute det | 2 0 ¢ | =det|2 —2¢ ¢ | = detl 9 ] = c(c®—-1) =
2 —1—-c 1
c —1 1 c —1—c 1

cle=1)(c+1).

Hence the matrix is invertible if ¢ # 0, 1 and —1.

6



56.

S7.

58.

99.

60.

1 -1 21" 1 2 1
Using the matrix inversion algorithm we have | —1 0 1 = -2 —4 —1|.
2 1 0 1 3 1

The equations are AX = B in matrix form where B = [3 0 1]7, so the solution is

1 2 1 3 4
-2 -4 -1 0(=1|-71.
1 3 1 1 4

] is invertible, it can be carried to the identity by row operations. These

X=A"'B=

1
-1 1
row operations generate elementary matrices as follows:

Since A = [

A—[_ll ?]eElA—[(l) ;]HEQ(ElA)—[l 2]—>E3(E2E1A)—[1 0]—1

where (by Lemma 1 §2.5) E; = [ 1 (1)], E, = [(1]
(E3FEyE)A =1 so (using Lemma 2 §2.5)

A:(EgEQEl)‘leflEglE?jl:[ L 0H1 0H1 2].

we have

-1 1

You can check this by direct matrix multiplication.

It is enough to find the matrix A of T, and A = [T'(E;) T'(F3)| by Theorem 1 where E; = l (1) 1

andEgzlo

] ] . Hence we are given T'(E,) = l 2

1
-1
1

] , S0 it remains to find T'(E;). If we write

X1 = [ ; 1 then we are also given T'(X;) = [ ] . But and we have £ = X; — 2Fj, so

T(El):T(Xl)—2T(E2):[_11]—2[?] :l:ﬂ.

Hence A = [T(E,) T(E,)] = [ :? ? 1 ,s0 T(X) = AX = [ _Eiiiyl is the desired
formula.
. . 0 -1 . .
Rotation through 7/2 has matrix R, = OEE and reflection in the line y = z has
. 01 .. ) . 1 0
matrix ()1 = 1ol Thus the transformation in question has matrix Q1 /2 = 0 -1 |

which is reflection in the X-axis.

We have T ([m Yy O]T) = [z y 0]" for any x and y because [z y 0]7lies in the z-y plane. The
reflection of a vector [0 0 2]7 in the z-y plane is [0 0 — 2], that is T ([0 0 z]T) =00 — 2.

Hence:
T T T 0 T T
T|\y|=T|y |+T=1|y |+ O]{y]{y]
Z 0 0 —z —z z




61.

62.

63.

64.

65.

for all x,y and z, so T is multiplication by the matrix A =

linear.

1
Reflection in the line y = —3z has ma‘mxlo 6 8 | =3

. 2 . 1| —4 -3 2 1 1

Hencethereﬂectlonofl_gl1ny——3xls5l_3 4 1{—3]_5[—18]'

(a) The matrixis A = lT[é] T[?H.WearegivenT[(l)]zlgzl,andalsoTlilz
5 _1- 0 1 1
7

Tl

Now observe that ol = 1| =115 as T is linear, T 0 =T e
T 12 3 x___2x+3y
19 -2 y | |92y
1

HencethematrixofTisA—[T[ll TlOH—[Q 3 ].Thisgives
) The matrix of 77! is A™! :[_2 _3] :1l2 3 ].HenceT*[Q] =

clap |

2r a+2p p—3x]
2z
c
r

-8 —6 1] -4 -3
3

et
1
T
Y

2z ¢+ 2r r—3z z ¢c+2r r—3z z c+2r r

i

a b c
= 2det { poqr ] = 2detA = 6. Finally det(—2B7!) = (—2)3
Ty 2

T a+2p p—3z T a+2p p
detB=det | 2y b+2q q—3y = 2det

2det{y b+2q q—3y y b+2q q

=" QR
Qo
=" 8
Qe o
S N 0O

zZ C T

x oa p
2det | y b q | =2det

1 JR—
detB

oo
|
QO

If A2 = —1 then (detA)? = det A? = det(—1) = (—1)®> = —1. This is impossible as detA is a

real number.

p+zx q+y r+=z p—a q—b r—c 2p 2q 2r
det | a+x b+y c+z |=det| a+x b+y c+z |=det|a+x b+y c+z
a+p b+q c+r a+p b+q c+r a+p b+q c+r
p q r p q r {p q r
=2det | a+x b+y c+z | =2det| a+x b+y c+z |=2det| x y =z
a+p b+q c+r a b c a b c

s N 0
NI 0

= —2det [

SRS
< o

b
Y
q

"R



66.

67.

68.

69.

70.

71.

72.

73.

74.

1 a p ¢ — a p q
1 b r
det x2 Lobor = det 0 Lobor =(l—ax)det| = 1 ¢
¥ z 1 ¢ 0 r 1 ¢ 9 1
| 0 22 z 1 v
1—bzx b r 1 e
= (1 — ax)det 0 1 ¢ |=(1—ax)(l—bx)det l 1 1 =(1—ax)(1—0bx)(1— cx).
0 rz 1 *
[a 3—a a+1 a 3 1
(a) | b 3—b b+1 | — | b 3 1| soA haszero determinant.
| ¢ 3—c c+1 c 31
a a b c
(b) | a+b 26 c+b — | b b b | so A has zero determinant.
3 33 3
detB = det| ©T¢ 2 = 2det(AT) = 2detA = 4. H
etB=det| o o4 = 2de = 2detA = 4. Hence
1
det(A’BTA™") = (detA)? det B =38.
et( ) = (detA)* detB ———
r—1 2 3 r—1 z—-1 -1 r—1 0 0
det 2 -3 x—2 | =det 2 -3 x—-2 | =det 2 -5 x—4
-2 =2 -2 x -2 -2 z+2 0

—(x —1)(z + 2)(z — 4). Hence the determinant is zero if x =1, —2 or 4.

If A2 = 3A then (detA)? = det(A?) = det(3A) = 3*detA. Hence either detA = 0 or detA =
3* =81.
3 -3 0 3 -3 0 3 0 0 e a
det| ¢c+5 =5 3a | =3det| c+5 =5 a | =3det| c+5 ¢ a :3{3det[d b]}
d—2 2 3b d—2 2 b d—2 d b

—9det l b d 1 = —9detA = 27.

If AB = —BA then detAdetB = det(AB) = det(—BA) = (—1)"det(BA) = —detAdetB.
Since det A and detB are numbers, this gives 2detA detB = 0. Hence detA = 0 or detB = 0.

We have A~! =
4 x 4, this gives

y tAade = %ade, so adjA = 2detA. Using the fact that A~! is of size
e

det(A™' —6adjA) = det(16A™" — 1247") = det(3 A™") = 3*det(A™") = 81

(a) detA = 2> —c—1 = (2c+1)(c—1) so A is invertible unless ¢ = — or ¢ = 1. If ¢ # —1 and
1 2c+1 —2c-1 0
c#lthen A l=————| —2+¢ c —c+1
2c2 —c—1 9

—1-c c+2 2Z-c



75.

76.

e

78.

79.

1
(b) Here det A = 2 for all values of ¢, so A is invertible and A™! = = {

In each case we use Theorem 3 §2.2 twice.

[A X Y

(a)det| 0 B Z

(b) det

<oun o
S

As in the Hint:

S~ M/

detAdetB. But de

T

ca(z) = det [ ’

1
-2

—4
—2

n-a-|

)\QI—A:l

Hence P = [X; X5] = l

ca(x) = det l a:_—|—42
4
M — A= l 4
—1

Hence P = [Xl XQ] = [

SOLUTION 1. cy(z)

-2
r+3

=detAd

0

-2
4
-2
-1
2
1

|

S N O =

multiplicity 2). Here M — A =

has P'AP =D =

B Z

0 C ] = detA (detB detC') = —6.

] detC = (detAdetB)detC = —6.

|-

A X
0 B

0
A

]. Hence detl 0 02

I
I, ] det [

<]

= 1 by direct calculation, and the result follows.

] =(x—1)(z+4)so A\ =1 and Ay = —4 are the eigenvalues.
] -
] -

1]
2 -

_02 ] , 80 X = l i ] is an eigenvector.

(1) ] , 80 Xo = [ 1 ] is an eigenvector.

TR

1
0

A1
0

x__ll ] = (z —2)(x+3) so A\; =2 and \y = —3 are the eigenvalues.
_11 ] - 3 _0 ] , 80 X1 = [ le ] is an eigenvector.
:411 ] - (1) (1) ] , 80 Xo = [ _1 ] is an eigenvector.
i _11_ hasP—lAP:DzlAOl AOJ: [(2) _03]
= det f x_—12 = (z — 1) so A\; = 1 is the only eigenvalue (of
1 :1 — (1) _01 , 80 Xy = l}] is the only basic

eigenvector. Hence A is not diagonalizable by Theorem 5 §2.3.

SoLuTioN 2. If A were diagonalizable, there would exist an invertible matrix P such that

A 0

-1 _
P AP—[O \

] = I. Hence A = PIP~! = I, a contradiction. So A is not diagonalizable.

10



80.

81.

82.

83.

84.

85.

86.

87.

Let A¥ = 0 where k > 1. If \ is an eigenvalue of A then AX = A\X for some eigenvector
X # 0. Hence 42X = A(MX) = AMAX) = AMAX) = A2X. Similarly, 43X = MX, and
eventually A¥X = M X. Since A*¥ = 0, this gives A*X = 0, and so \¥ = 0 because X # 0.
Thus A = 0.

Since A is diagonalizable, there exists an invertible matrix P such that P~'AP = D is

diagonal. But the diagonal entries of D are just the eigenvalues of A in some order, so D =0
by hypothesis. Hence P~'AP = 0, so that A = POP~! = 0.

If X is an eigenvalue of A then AX = AX for some eigenvector X # 0. Then (as above)
A2X = \?X. But A% = A so this gives A?’X = AX = AX. Hence (\> — \)X = 0, whence
A2 = X\ because X # 0. This means that A =0 or \ = 1.

Let P7'AP = D = diag(A\, Mo, -+, \,,) where the )\; are the eigenvalues of A. Since we are
assuming that A\? = ); for each i, we have D? = diag(A2, \3,- -, \2) = diag(A1, Ag, -+, \p) =
D. Hence, A2 = (PDP~')?=PD?P~' = PDP~! = A.

Let P~'AP = D where D is diagonal. Then (PAP~)? = D? that is PA2P~! = D?. Since
D? is also diagonal, this shows that A? is also diagonalizable (with the same P).

Let P~*AP = D where D is diagonal. Then (PAP~1)T = DT = D, that is (P~1)TATPT = D.
If we write Q = PT, then Q7! = (PT)™! = (P71)T, so we have Q 1ATQ = D. This shows
that AT is diagonalizable.

r—2 -1 -1 r—3 -1 —1
calxy=det| -1 -1 1 = det 0 z—-1 1 after adding column 3 to
—1 -1 x-2 r—3 -1 x-2
column 1. Tt follows that ca(x) = (z — 1)*(z — 3), so A\; = 1 is an eigenvalue of multiplicity
2. The basic eigenvectors corresponding to A; are the basic solutions to the equations(A\; ] —

-1 -1 -1 0
A)X = 0. The reduction of the augmented matrix is [\M\/ —A 0)=| -1 0 1 0| —
-1 -1 -1 0
10 -1 0 -1
0 1 2 0. Hence Xy = —2 is the only basic eigenvector corresponding to Aq,
00 0 O 1
so A is not diagonalizable by Theorem 5 §2.3.
r —1 -1 r—2 —1 —1
Here cqa(x) =det| —1 x —1 | =det| x—2 x —1 | after adding columns 2 and 3
-2 0 =z r—2 0 =z
to column 1. Hence ca(z) = (x + 1)%(x — 2), so \; = —1 is an eigenvalue of multiplicity 2.
But the basic eigenvectors corresponding to A\; are the basic solutions to the homogeneous
-1 -1 -1 0
system (A1 —A)X = 0. The augmented matrix is reduced as follows: | =1 —1 —1 0 | —
-2 0 -10

, so there is only one parameter, and so only one basic solution. Since the

o O =
O N =

1
1
0

o O O

multiplicity of A; is 2, this shows that A is not diagonalizable by Theorem 5 §2.3.
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88.

89.

90.

91.

92.

Let PYAP = D = diag()\1, Aa, - -+, \,) where the \; are the eigenvalues of A. Since we are
assuming that \; > 0 for each i, Dy = diag(v/A1, VAo, -+ - v/ An) is a real diagonal matrix such
that D2 = D. Put B = PDyP~!'. Then B*> = (PDyP~%)? = PDiP ' = PDP™! = A.

Let P7'AP = D = diag(\1, A2, - - -, \,) where the ); are the eigenvalues of A. We are assuming
that each \; = A\, so P7YAP = diag(\,\,---,\) = M. Hence A = P(AI)P~ = Al

Let P7'AP = D = diag(A\i, A2, -, \,) where the \; are the eigenvalues of A. Then A =
PDP~! so detA = detP detD =detD = M)Ay A\,

detP
1 4 r—1 —4
Here A = ll 1],socA(x) = det(xl — A) :det[ 1 $_1] =22 -2 -3 = (z—
3)(z+1). Hence the eigenvalues of A are Ay = 3 and \y = —1. The eigenvectors corresponding
to an eigenvalue A are the nonzero solutions to (Al — A)X = 0. In our case:
2 -4

-1 2

A1:3(3]—A):l 1

] so an eigenvector is X; = l 2 ] :
-2 -4

A2=_1;@J_A):l_1_4

] so an eigenvector is Xy = l _12 ] .
2 =2

Hence P = [X; X,] = [1 ]

] is a diagonalizing matrix for A, that is P'AP = D =
[ 50 ] . (Verify by showing AP = PD.) Hence A = PDP~! so

0 -1
oo < 221 G0 1)
! 3

- [R e

(1) 4330 30— (1) ].
A S GO A C Ve S
Suppose that the recurrence is .2 = ax,, + bzr,+1 where a and b are fixed numbers. The idea

2
This is the desired formula for A™.

here is to calculate the columns V,, = [ xx" ] rather than the x,, themselves. The reason is
n+1
that
Tn1 Tn+1 0 1 Tn
Vi1 = = = = AV, for each n.
Tn42 ATy + NTpi1 a b Tp41
Thus the sequence Vg, Vi, Vs, ... is a dynamical system, so we get an exact formula for the V,,
if A is diagonalizable. In our case a =2 and b= 1, s0 A = (2) } ] . Thus calx) =
det(xl — A) :det[ _:BQ x_—ll 1 =2?—2—-2=(z—2)(x+1).
Hence the eigenvalues of A are \; = 2 and A\ = —1. The eigenvectors corresponding to any
eigenvalue A are the nonzero solutions X to (Al — A)X = 0. In our case:

2 -1

A1:250(/\1[—A):(2[_A):[_2 1

. . 1
] so one eigenvector is X; = l 9 ] :

12



A=—-1s0(Ml—-A)=(—1—-A)= [ :; :; ] and an eigenvector is Xy = [ _11 ] .
Thus P = [X; X, = is a diagonalizing matrix for A, that is P"'AP =D = [ (2) _01 ] . This
giver A= PDP™L.

Now V,, = A"V, where V = [ 1 1 since we are assuming that o = — = x;. Hence we

have
weworreroe=[3 ][5 4 (12 ]) 2 [EGE

Since the top entry of V;, is z, we get z,, = 3(2"! 4 (—1)") as the required exact formula.
You can check it against the first few values xg = 1, 1 = 1, 25 = 3, etc.

. ‘ . L 144 —i N I e 1—7 —1
j— 2_ _1—7 = —_ =
93. detA = (1414)+14* =1i,s0 A —Z_[ ; 1] ( Z)[ ; 1] l 1 —i]'

94. If we write z = 2—3i, then the quadratic (z—z)(x—Zz) = 22— (2+2)x+ 27 has real coefficients.
Indeed, z + Z = 4 is twice the real part of z, and 2z = 13 = ]2]2 is the square of the absolute
value of z. So the required polynomial is 22 — 4x + 13. The other root is z = 2 + 3i.

95. w? — 6w + 13 = (5 — 12i) — (18 — 12i) + 13 = 0. The other root is W = 3 + 2i.

96. 2:(1+2’)"—|—(1—i)”:(1+i)"+(1—i)”:(1+i)n—|—(1—i)n:(1—i)”+(1—|—i)”:z.
Hence z is real.

1 1 1
97. Z(WE) = W( 2Z) = W(| z|*) = 1. The result follows.
2 z
98. If zw is real and z # 0, then g ﬂ = Z—u; is real. So take r = Z—u;
P B
99. By the Hint: |z+w|° + |z —w|° = (z4+w)(Z+0)+ (2 —w)(Z — 1)
= (224 20+ wWZ 4+ ww) + (22 — 20 — WZ + WD)
= 2(2Z + ww)
= 2(]z" + [wl’).

100. Let p=[2 —15]7 and ¢= [3 0 4]T be the position vectors of the points. The position vector
of the point £ the way from p'to ¢is t = p+ 2(¢—p) = 2p+ ¢ =111 —4 24]7.

101. Let p=[123]" and ¢ q= [8 — 2 0]7 be the position vectors of the points. The position vector
of the two points are #; = P+3(7—p) =29p+50=35 13" and bty = g+ 2(7—p) = s7+ 37 =

117 — 237,
T —_— — =
102. AE = AB + BE and also AE = AC + C'E. Hence
— e e 1R B —_— = TR R
AE = 3(AE E) = 3[(AB + BE) + (AC+ CFE)| = 5|AB + AC
— —
because BE = —CE (since E is the midpoint of BC).



103.

104.

105.

106.

107.
108.

109.

110.

111.

112.

113.

114.

115.

The diagonals are
n1yr—[o00*=n117, 0117 —[100" =[-111]T,
noyr—[10"=0n —-11}%, m1o*—po01) =011 -1
No pair is orthogonal as the dot products are all nonzero.

(a) Let 0 = proj{v) = (ﬁ"g)dﬁ: d=

d]
the arithmetic is that v, e d = 0 should hold.

(b) Let @ = projAv) = (Zf]%)d =1d=130 —7)7. Then @, = v — &, = 1[7 2 3]".
We have || + @||* = ||7]|* +2 Gew+ ||| . Hence the condition ||7]|* + ||&|* = |7 + || gives
2vew = 0, that is ¥ e w = 0. This means that ¥ and w are orthogonal.

[121]". Then 5 =0 — 0} = 5[5 —4 3]7. A check on

Here d =[5 0 27 from the given line, so the equation is [z y 2] = [3 —12]7 +t[-5 0 2]7.

Now d = PP, = [111]7, so the line is [z y 2]T =[10 — 27 +¢[111]7.

Every point on the line has the form [z y 2] =
on the plane if 3(2 +t) + (-1 — t) — 2(3 — 4¢)
5 3 1]T

is[z y 2]T = 5 5

2+t —1—t 3—4t]". This point lies
= 4, which gives t = % Hence the point

The point Py(3,—1,0) is in the plane, so the vector v = RP = [—22 —2]T is in the plane.
Since d = [11 —1]7 is also in the plane, a normal is @ = #x d = [0 —4 —4]7. Thus the lane
has equation y 4+ z = k for some number k. Since Py(3,—1,0) lies in the plane, k = —1, and
the equation is y + z = —1.

The normal 7 = [1 1 — 2]7 will serve as direction vector of the line (it is perpendicular to the
plane). As P(1,—1,0) is in the line, the equation is [z y 2] =[1 —10]7 +¢[11 — 2] .

As the planes are parallel, the normal 7 = [4 — 3 1]7 of the given plane will serve for the new
one. So the new plane has equation 4z — 3y + z = d for some scalar d. Since Fy(2,3, —1) lies
in the new plane, d = —2 and the equation is 4x — 3y 4+ z = —2.

. o - =3 . T - s 1 T
Write Py = Fy(1,2,0) and © = PP = [-1 —12]". Compute 0 = proj;(v) = 2 —11]".
The position vector of () is then ¢ = py + ) = %[8 11 1]7.

A normal to the plane is 7 = [5 — 7 2]7. Choose any point in the plane, say Py(1,0, —1), and

write ¥ = ]_3(;1_5 = [0 0 3]7. Then the shortest distance from P to the plane is ||projz(v)| =
(et ) fedl o

-l
7] Il V78

- _ _ - _ D p_ T 7 T = () —
Write Py = Py(1,—-1,0), v = B, P =[012]" and d = [2 1 1]". Compute v = projA{v) =
Then the shortest distance is ||v — o1 || = H%[—2 1 B]TH = V14

d.

1
2

The plane in question has equation 2z — 3y + 2z = d for some number d (using the same
normal as the given plane). As it contains the point Py(1,—1,0), we obtain d = 5, so the
equation is 2x — 3y 4+ 2z = 5. This does not pass through the origin.
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— — — —_— —
116. We have AB =[-1 —1 —1]7, AC =101 —4]" and BC = [12 — 3]'. Hence ABe BC =0
—
so the angle at B is a right angle. If § is the internal angle at C then, since CA =1[0 —1 4]
e
CAe(CB 4 V1417

and OB = [—1 —2 3]7, we have cosf) = == = =
fcAllon] R o

— —
117. AB = [-1 1 0]F and AC = [-1 0 1]7. The area of the triangle is half the area of the
is L|AB x AC|| = L Tl = V3
parallelogram, that is ; HAB X AC’H =3 H[l 11] H = ¥,
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