Practice Problems S4

1. Consider a Markov chain that starts in state 1 with transition matrix $P=\left[\begin{array}{ll}\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3}\end{array}\right]$.
(a) Explain why the chain is regular.
(b) Find the probability that the chain is in state 1 after 2 transitions.
(c) Find the steady-state vector for the chain.
2. By inspection, find the determinants of the following matrices:
(a) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$; (b) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1\end{array}\right]$; (c) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1\end{array}\right]$;
(d) $\left[\begin{array}{ccc}1 & -2 & 3 \\ 2 & 1 & 4 \\ 2 & -4 & 6\end{array}\right]$; (e) $\left[\begin{array}{cccc}1 & 0 & 4 & 9 \\ -8 & -7 & 12 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 5 & 3\end{array}\right]$.
3. Compute the determinants of the following matrices
(a) $A=\left[\begin{array}{ccc}-2 & 1 & 3 \\ 1 & -7 & 4 \\ -2 & 1 & 3\end{array}\right]$; (b) $A=\left[\begin{array}{cccc}3 & 5 & -2 & 6 \\ 1 & 2 & -1 & 1 \\ 2 & 4 & 1 & 5 \\ 3 & 7 & 5 & 3\end{array}\right]$.
4. Find the inverse of $A=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & -1 & 1\end{array}\right]$ using the adjoint formula.
5. Given $A=\left[\begin{array}{ccc}3 & -1 & 2 \\ 5 & 5 & -2 \\ 1 & 2 & 3\end{array}\right]$, find the (1,3)-entry of A^{-1}.
6. If A and B are 4×4-matrices with $\operatorname{det}(A)=-2$ and $\operatorname{det}(B)=2$, find:
(a) $\quad \operatorname{det}\left(\operatorname{adj}(A) B^{T} A^{4}\left(B^{2}\right)^{T}\right)$;
(b) $\quad \operatorname{det}\left(A^{3}\left(B^{2}\right)^{T}\left((\operatorname{adj}(A))^{-1}\right)^{3} B^{-1}\right)$.
7. Let $A=\left[\begin{array}{ccc}a & b & c \\ 1 & -1 & 2 \\ d & e & f\end{array}\right], A=\left[\begin{array}{ccc}a & b & c \\ 3 & -2 & 1 \\ d & e & f\end{array}\right]$ and $C=\left[\begin{array}{ccc}a & b & c \\ 1 & 0 & -3 \\ d & e & f\end{array}\right]$ be 3×3-matrices. If $\operatorname{det}(A)=4$ and $\operatorname{det}(B)=5$, find $\operatorname{det}(C)$.
8. For which values of $c \in \mathbb{R}$ is A invertible if $A=\left[\begin{array}{ccc}1 & c & 0 \\ 2 & 0 & c \\ c & -1 & 1\end{array}\right]$.
9. Solve the following system by Cramer's rule:
(a) $\left\{\begin{array}{c}x+2 y=4 \\ 3 x+7 y=13\end{array}\right.$; (b) $\left\{\begin{array}{c}3 x-2 y+4 z=-3 \\ 5 x+3 y+z=0 \\ 2 x+6 y-5 z=6\end{array}\right.$.

Recommended Problems:

Pages 133-134: 1. a, b, f, g, h, k, l, m, n, o, p; 5. a, b; 6, 7, 8, 9, 10, 13, 14a, 15a;
Pages 145-146: 1. a, c; 2. a, b, c, d; 3, 4, 5, 6b, 8, 9, 10.

