Practice Problems S2

1. Let $A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & 0 & 4\end{array}\right], B=\left[\begin{array}{ccc}2 & 3 & 1 \\ 1 & 9 & 7 \\ -1 & 0 & 2\end{array}\right]$ and $C=\left[\begin{array}{ccc}1 & 3 & 2 \\ 1 & 1 & 1 \\ -1 & 4 & 1\end{array}\right]$.

Compute the products $A B, B A^{T}, B C$ and $C B$.
2. Consider the following system of linear equations:

$$
\left\{\begin{array}{c}
x_{1}-2 x_{2}+x_{3}-4 x_{4}=1 \\
x_{1}+3 x_{2}+7 x_{3}+2 x_{4}=2 \\
x_{1}-12 x_{2}-11 x_{3}-16 x_{4}=-1
\end{array} .\right.
$$

(a) Find basic solutions to the associated homogeneous system;
(b) Find a particular solution to the system.
3. Find the general solution to the linear system $A X=B$ and specify a particular solution, where

$$
A=\left[\begin{array}{cccc}
2 & 1 & -1 & -1 \\
3 & 1 & 1 & -2 \\
-1 & -1 & 2 & 1 \\
-2 & -1 & 0 & 2
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{c}
-1 \\
-2 \\
2 \\
3
\end{array}\right]
$$

Find basic solutions and write the general solution to the associated homogeneous system as a linear combination of these basic solutions.
4. Find the inverses of the following matrices:
(a) $\left[\begin{array}{ll}7 & 4 \\ 3 & 2\end{array}\right]$; (b) $\left[\begin{array}{ccc}1 & 3 & 2 \\ 1 & 1 & 1 \\ -1 & 4 & 1\end{array}\right]$.
5. Use matrix inversion to solve the following systems of linear equations:
(a) $\left\{\begin{array}{c}7 x+4 y=2 \\ 3 x+2 y=-2\end{array} ;\right.$ (b) $\left\{\begin{array}{c}x+3 y+2 z=5 \\ x+y+z=1 \\ -x+4 y+z=5\end{array}\right.$.
6. Consider a directed graph with three vertices v_{1}, v_{2} and v_{3}. Find the adjacency matrix of this graph if the edges are $v_{1} \longrightarrow v_{1}, v_{1} \longrightarrow v_{2}, v_{2} \longrightarrow v_{3}, v_{3} \longrightarrow v_{2}$ and $v_{3} \longrightarrow v_{1}$. Determine the number of paths of length 5 from v_{2} to v_{3} and from v_{3} to v_{1}.

Recommended Problems:

Pages 34-35: 1a,c; 2a,c,d,f,g; 3a,c; 4a; 5a; 8a
Pages 47-50: 1a,b,c,d,f.g; 2a,b; 5a; 7a,b; 8; 10; 16a; 22; 32
Pages 59-60: 1a,b,c; 2a,b,c,d,e,f,k; 3a,c,e; 4a; 5a,b; 6a,b.

Solutions

1. $A B=\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & 0 & 4\end{array}\right]\left[\begin{array}{ccc}2 & 3 & 1 \\ 1 & 9 & 7 \\ -1 & 0 & 2\end{array}\right]=\left[\begin{array}{ccc}-1 & -6 & -2 \\ 0 & 6 & 10\end{array}\right]$,
$B A^{T}=\left[\begin{array}{ccc}2 & 3 & 1 \\ 1 & 9 & 7 \\ -1 & 0 & 2\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ -1 & 0 \\ 2 & 4\end{array}\right]=\left[\begin{array}{cc}1 & 8 \\ 6 & 30 \\ 3 & 6\end{array}\right]$,
$B C=\left[\begin{array}{ccc}2 & 3 & 1 \\ 1 & 9 & 7 \\ -1 & 0 & 2\end{array}\right]\left[\begin{array}{ccc}1 & 3 & 2 \\ 1 & 1 & 1 \\ -1 & 4 & 1\end{array}\right]=\left[\begin{array}{ccc}4 & 13 & 8 \\ 3 & 40 & 18 \\ -3 & 5 & 0\end{array}\right]$,
$C B=\left[\begin{array}{ccc}2 & 3 & 1 \\ 1 & 1 & 1 \\ -1 & 4 & 1\end{array}\right]\left[\begin{array}{ccc}3 & 30 & 26 \\ -1 & 0 & 2\end{array}\right]=\left[\begin{array}{lll}12 & 10 \\ 1 & 33 & 29\end{array}\right]$.
2. The system has augmented matrix $\left[\begin{array}{ccccc}1 & -2 & 1 & -4 & 1 \\ 1 & 3 & 7 & 2 & 2 \\ 1 & -12 & -11 & -16 & -1\end{array}\right]$ which can be brought by row operations to the reduced row-echelon matrix $\left[\begin{array}{ccccc}1 & 0 & 17 / 5 & -8 / 5 & 7 / 5 \\ 0 & 1 & 6 / 5 & 6 / 5 & 1 / 5 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$. The system has general solution
$X=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}7 / 5-17 / 5 t+8 / 5 s \\ 1 / 5-6 / 5 t-6 / 5 s \\ t \\ s\end{array}\right]=\left[\begin{array}{c}7 / 5 \\ 1 / 5 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{c}-17 / 5 \\ -6 / 5 \\ 1 \\ 0\end{array}\right]+s\left[\begin{array}{c}8 / 5 \\ -6 / 5 \\ 0 \\ 1\end{array}\right]$.
$X_{1}=\left[\begin{array}{c}7 / 5 \\ 1 / 5 \\ 0 \\ 0\end{array}\right]$ is a particular solution to the system. The associated homogeneous
system has general solution $X_{0}=t\left[\begin{array}{c}-17 / 5 \\ -6 / 5 \\ 1 \\ 0\end{array}\right]+s\left[\begin{array}{c}8 / 5 \\ -6 / 5 \\ 0 \\ 1\end{array}\right]$, with $X_{2}=\left[\begin{array}{c}-17 / 5 \\ -6 / 5 \\ 1 \\ 0\end{array}\right]$ and $X_{3}=\left[\begin{array}{c}8 / 5 \\ -6 / 5 \\ 0 \\ 1\end{array}\right]$, or $X_{4}=\left[\begin{array}{c}-17 \\ -6 \\ 5 \\ 0\end{array}\right]$ and $X_{5}=\left[\begin{array}{c}8 \\ -6 \\ 0 \\ 5\end{array}\right]$ as basic solutions.
3. The augmented matrix of the system has reduced row-echelon form

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 1 & 3 \\
0 & 1 & 0 & -4 & -9 \\
0 & 0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore, the general solution is

$$
X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
3-t \\
-9+4 t \\
-2+t \\
t
\end{array}\right]=\left[\begin{array}{c}
3 \\
-9 \\
-2 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
4 \\
1 \\
1
\end{array}\right] .
$$

$X_{1}=\left[\begin{array}{c}3 \\ -9 \\ -2 \\ 0\end{array}\right]$ is a particular solution. The associated homogeneous system has general solution $X_{0}=t\left[\begin{array}{c}-1 \\ 4 \\ 1 \\ 1\end{array}\right]$ with $\left[\begin{array}{c}-1 \\ 4 \\ 1 \\ 1\end{array}\right]$ as a basic solution.
4. (a) $\operatorname{det}(A)=\operatorname{det}\left|\begin{array}{ll}7 & 4 \\ 3 & 2\end{array}\right|=7 \times 2-3 \times 4=2 \neq 0$. So, A is invertible. Its inverse $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)=\frac{1}{2}\left[\begin{array}{cc}2 & -4 \\ -3 & 7\end{array}\right]$. It can be also obtained by bringing $\left[A \mid I_{2}\right]$ to the reduced row-echelon form $\left[I_{2} \mid A^{-1}\right]$.
(b) By row operations carry the matrix $\left[\begin{array}{cccccc}1 & 3 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ -1 & 4 & 1 & 0 & 0 & 1\end{array}\right]$ to its reduced rowechelon form $\left(\left[A \mid I_{3}\right] \longrightarrow\left[I_{3} \mid A^{-1}\right]\right)$:

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & -3 & 5 & 1 \\
0 & 1 & 0 & -2 & 3 & 1 \\
0 & 0 & 1 & 5 & -7 & -2
\end{array}\right] .
$$

Therefore, $A^{-1}=\left[\begin{array}{ccc}-3 & 5 & 1 \\ -2 & 3 & 1 \\ 5 & -7 & -2\end{array}\right]$.
5. In matrix form:
(a)

$$
\begin{aligned}
{\left[\begin{array}{ll}
7 & 4 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
2 \\
-2
\end{array}\right] \Longrightarrow } & {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
7 & 4 \\
3 & 2
\end{array}\right]^{-1}\left[\begin{array}{c}
2 \\
-2
\end{array}\right] } \\
& =\frac{1}{2}\left[\begin{array}{cc}
2 & -4 \\
-3 & 7
\end{array}\right]\left[\begin{array}{c}
2 \\
-2
\end{array}\right]=\left[\begin{array}{c}
6 \\
-10
\end{array}\right]
\end{aligned}
$$

i.e., $x=6$ and $y=-10$.
(b)

$$
\begin{aligned}
{\left[\begin{array}{ccc}
1 & 3 & 2 \\
1 & 1 & 1 \\
-1 & 4 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
5 \\
1 \\
5
\end{array}\right] \Longrightarrow } & {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
1 & 3 & 2 \\
1 & 1 & 1 \\
-1 & 4 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
5 \\
1 \\
5
\end{array}\right] } \\
& =\left[\begin{array}{ccc}
-3 & 5 & 1 \\
-2 & 3 & 1 \\
5 & -7 & -2
\end{array}\right]\left[\begin{array}{l}
5 \\
1 \\
5
\end{array}\right]=\left[\begin{array}{c}
-5 \\
-2 \\
8
\end{array}\right]
\end{aligned}
$$

i.e., $x=-5, y=-2$ and $z=8$.
6. This directed graph has adjancency matrix $A=\left[\begin{array}{ccc}1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$. The number of 5paths (i.e., paths of length 5) from a vertex v_{j} to another vertex v_{i} is the (i, j)-entry of $A^{5}=\left[\begin{array}{lll}5 & 3 & 5 \\ 5 & 3 & 5 \\ 3 & 2 & 3\end{array}\right]$. Therefore, there are 25 -paths from v_{2} to v_{3} and 5 -paths from v_{3} to v_{1}.

