1. (a) F
(b) T
(c) T
(d) F
(e) F
(f) T
(g) F
(h) T
2. (a) $\left[\begin{array}{lll}1 & 0 & 8 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(b) 1
(c) 12
(d) $\frac{3 \pi}{4}\left(\right.$ or $-\frac{5 \pi}{4}$)
3. Page 158 (Example 2)
4. (a) $A=\left[\begin{array}{cccc|c}1 & -1 & -5 & 6 & 1 \\ 2 & 0 & -4 & 8 & 6 \\ -2 & 1 & 7 & -10 & -4 \\ -1 & 1 & 5 & -6 & -1\end{array}\right]$
(b) $R=\left[\begin{array}{cccc|c}1 & 0 & -2 & 4 & 3 \\ 0 & 1 & 3 & -2 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right], \operatorname{Rank}(A)=2$;
(c) Gen. Sol. to the system: $X=\left[\begin{array}{l}3 \\ 2 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{c}2 \\ -3 \\ 1 \\ 0\end{array}\right]+s\left[\begin{array}{c}-4 \\ 2 \\ 0 \\ 1\end{array}\right]$,
with $t, s \in \mathbb{R}$;
Particular solution: $X_{1}=\left[\begin{array}{l}3 \\ 2 \\ 0 \\ 0\end{array}\right]$;
(d) Gen. Sol. to the ass. hom. system: $X_{2}=t\left[\begin{array}{c}2 \\ -3 \\ 1 \\ 0\end{array}\right]+s\left[\begin{array}{c}-4 \\ 2 \\ 0 \\ 1\end{array}\right]$, with $t, s \in \mathbb{R}$
Basic solutions: $X_{3}=\left[\begin{array}{c}2 \\ -3 \\ 1 \\ 0\end{array}\right]$ and $X_{4}=\left[\begin{array}{c}-4 \\ 2 \\ 0 \\ 1\end{array}\right]$.
5. (a) $A^{-1}=\left[\begin{array}{ccc}-3 & -1 & 5 \\ 5 & 2 & -8 \\ -1 & 0 & 1\end{array}\right]$;
(b) $x=1, y=-2$ and $z=2$.
6. (a) $P=P^{1}$ is a stochastic matrix with nonzero entries;
(b) $\frac{5}{9}$;
(c) $S=\frac{1}{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
7. A has two eigenvalues $\lambda_{1}=-3$ of multiplicity 1 , and $\lambda_{2}=\lambda_{3}=3$ of multiplicity Two. There are Two basic eigenvectors of A, say $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$, corresponding to the eigenvalue $\lambda_{2}=\lambda_{3}=3$. Therefore, A is diagonalizable.
8. (a) $7+4 i$;
(b) $512(-1+\sqrt{3} i)$.
9. (a) $16 e^{\frac{4 \pi}{3} i}$ or $16 e^{-\frac{2 \pi}{3} i}$;
(b) The complex number $z=-8-8 \sqrt{3} i$ has 4 fourth roots: $z_{o}=$ $2 e^{\frac{\pi}{3} i}=1+\sqrt{3} i, z_{1}=2 e^{\frac{5 \pi}{6} i}=-\sqrt{3}+i, z_{2}=2 e^{\frac{4 \pi}{3} i}=-1-\sqrt{3} i$ and $z_{3}=2 e^{\frac{11 \pi}{6} i}=2 e^{-\frac{\pi}{6} i}=\sqrt{3}-i$.
10. (a) A has basic eigenvectors $X_{1}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ and $X_{2}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ corresponding to the eigenvalues $\lambda_{1}=3$ and $\lambda_{2}=2$, respectively; So, $P=\left[\begin{array}{ll}X_{1} & X_{2}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 3 & 2\end{array}\right]$, with inverse $P^{-1}=\left[\begin{array}{cc}-2 & 1 \\ 3 & -1\end{array}\right]$, diagonalizes A :

$$
P^{-1} A P=\left[\begin{array}{cc}
-2 & 1 \\
3 & -1
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-6 & 5
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
3 & 2
\end{array}\right]=\left[\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right] ;
$$

(b) $x_{k}=3^{k}$.
11. 5.
12. (a) $\overrightarrow{A B} \times \overrightarrow{A C}=\left[\begin{array}{c}2 \\ -3 \\ 1\end{array}\right] \times\left[\begin{array}{c}1 \\ -4 \\ 0\end{array}\right]=\left|\begin{array}{ccc}\vec{\imath} & \vec{\jmath} & \vec{k} \\ 2 & -3 & 1 \\ 1 & -4 & 0\end{array}\right|=4 \vec{\imath}+\vec{\jmath}-5 \vec{k}=$

$$
\left[\begin{array}{c}
4 \\
1 \\
-5
\end{array}\right] ;
$$

(b) $\vec{n}=\overrightarrow{A B} \times \overrightarrow{A C}$ is a normal vector. The plane through the points A, B and C has equation $4(x-1)+(y-2)-5(z-2)=0$ or $4 x+y-5 z+4=0$. It does not contain D as $4(1)+3-5(2)+4=$ $1 \neq 0$;
(c) The triangle has area $\frac{1}{2}\|\overrightarrow{A B} \times \overrightarrow{A C}\|=\frac{1}{2} \sqrt{42}$;
(d) 4 .

