UNIVERSITY OF CALGARY DEPARTMENT OF MATHEMATICS AND STATISTICS MATHEMATICS 211 - L06 Fall 2008 MIDTERM EXAM [October 31, 2008 (Monday)]

Time: 50 minutes. PLEASE write your Name on the very last page. NO CALCULATORS.
Total Marks $=100$. Work all problems. Marks are shown in brackets.
Student ID: \qquad
[Marks]

1. Let A be the 3×4 matrix:

$$
A=\left[\begin{array}{ccccc}
3 & 2 & -7 & 11 & 2 \\
2 & 1 & -4 & 7 & 2 \\
1 & 1 & -3 & 4 & 0
\end{array}\right] .
$$

(a) Find an invertible matrix U of size 3×3 such that the product $U A=R$ is the reduced row-echelon form of A.

Problem 1. continued.
(b) Write down the system of linear equations whose augmented matrix is A.
(c) Use the reduced row-echelon matrix R of A from part (a) to find the general solution to this system (see part (b)) and specify a particular solution to the system. What is the general solution to the associated homogeneous system? Find basic solutions.
2. (a) Use matrix inversion to find x and y if

$$
\left\{\begin{array}{l}
2 x+5 y=1 \\
3 x+4 y=-2 .
\end{array}\right.
$$

(b) Find $T\left(\left[\begin{array}{c}1 \\ -2\end{array}\right]\right)$ if $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is a linear transformation with $T\left(\left[\begin{array}{l}2 \\ 3\end{array}\right]\right)=\left[\begin{array}{c}2 \\ -5\end{array}\right]$ and $T\left(\left[\begin{array}{l}5 \\ 4\end{array}\right]\right)=\left[\begin{array}{l}3 \\ 7\end{array}\right]$.
[18]
3. Use row operations to find the inverse of $A=\left[\begin{array}{ccc}4 & -2 & 3 \\ 1 & 2 & -5 \\ 2 & 1 & -3\end{array}\right]$.
4. Let $A=\left[\begin{array}{ccc}1 & -2 & 3 \\ 1 & 2 & -5 \\ 2 & 1 & -3\end{array}\right]$.
(a) Compute the determinant of A;
[6] (b) Find the (2,3)-entry of the inverse A^{-1} of A.
5. Express the matrix $A=\left[\begin{array}{ll}3 & 7 \\ 1 & 2\end{array}\right]$ as a product of elementary matrices.
6. Let $P=\left[\begin{array}{ll}3 / 5 & 1 / 3 \\ 2 / 5 & 2 / 3\end{array}\right]$ be the transition matrix of a Markov chain that starts in state 1 .
(a) What is the probalibility that the chain is in state 2 after 2 transitions?
[10]
(b) Explain why this chain is regular and find the steady-state vector for the chain.

Name:	Student ID:	Marks:

