Practice Problems S2

1. Let $A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & 0 & 4\end{array}\right], B=\left[\begin{array}{ccc}2 & 3 & 1 \\ 1 & 9 & 7 \\ -1 & 0 & 2\end{array}\right]$ and $C=\left[\begin{array}{ccc}1 & 3 & 2 \\ 1 & 1 & 1 \\ -1 & 4 & 1\end{array}\right]$.

Compute the products $A B, B A^{T}, B C$ and $C B$.
2. Consider the following system of linear equations:

$$
\left\{\begin{array}{c}
x_{1}-2 x_{2}+x_{3}-4 x_{4}=1 \\
x_{1}+3 x_{2}+7 x_{3}+2 x_{4}=2 \\
x_{1}-12 x_{2}-11 x_{3}-16 x_{4}=-1
\end{array} .\right.
$$

(a) Find basic solutions to the associated homogeneous system;
(b) Find a particular solution to the system.
3. Find the general solution to the linear system $A X=B$ and specify a particular solution, where

$$
A=\left[\begin{array}{cccc}
2 & 1 & -1 & -1 \\
3 & 1 & 1 & -2 \\
-1 & -1 & 2 & 1 \\
-2 & -1 & 0 & 2
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{c}
-1 \\
-2 \\
2 \\
3
\end{array}\right]
$$

Find basic solutions and write the general solution to the associated homogeneous system as a linear combination of these basic solutions.
4. Find the inverses of the following matrices:
(a) $\left[\begin{array}{ll}7 & 4 \\ 3 & 2\end{array}\right]$; (b) $\left[\begin{array}{ccc}1 & 3 & 2 \\ 1 & 1 & 1 \\ -1 & 4 & 1\end{array}\right]$.
5. Use matrix inversion to solve the following systems of linear equations:
(a) $\left\{\begin{array}{c}7 x+4 y=2 \\ 3 x+2 y=-2\end{array} ;\right.$ (b) $\left\{\begin{array}{c}x+3 y+2 z=5 \\ x+y+z=1 \\ -x+4 y+z=5\end{array}\right.$.
6. Consider a directed graph with three vertices v_{1}, v_{2} and v_{3}. Find the adjacency matrix of this graph if the edges are $v_{1} \longrightarrow v_{1}, v_{1} \longrightarrow v_{2}, v_{2} \longrightarrow v_{3}, v_{3} \longrightarrow v_{2}$ and $v_{3} \longrightarrow v_{1}$. Determine the number of paths of length 5 from v_{2} to v_{3} and from v_{3} to v_{1}.

Recommended Problems:

Pages 34-35: 1a,c; 2a,c,d,f,g; 3a,c; 4a; 5a; 8a
Pages 47-50: 1a,b,c,d,f.g; 2a,b; 5a; 7a,b; 8; 10; 16a; 22; 32
Pages 59-60: 1a,b,c; 2a,b,c,d,e,f,k; 3a,c,e; 4a; 5a,b; 6a,b.

