Practice Problems S3

1. Determine whether the following matrices are elementary matrices or not; write down the inverses of the elementary matrices (explain your answer):
(a) $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$,
(b) $\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$,
(c) $\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$,
(d) $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$,
(e) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]$,
(f) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & -1\end{array}\right]$.
2. Find an invertible matrix U such that the product $R=U A$ is the reduced row-echelon form of A if

$$
A=\left[\begin{array}{cccc}
1 & -1 & 3 & 5 \\
3 & -2 & 1 & -2 \\
-1 & 1 & 1 & 3
\end{array}\right]
$$

3. Express the following matrix as a product of elementary matrices:

$$
A=\left[\begin{array}{ll}
5 & 3 \\
2 & 1
\end{array}\right] .
$$

4. Find the matrix of the reflection in the line $y=-x$.
5. Find a rotation or a reflection that is equal to
(a) reflection in the y-axis followed by rotation through $\pi / 2$;
(b) rotation through $\pi / 2$ followed by reflection in the line $y=x$.
6. Given $T\left(\left[\begin{array}{ll}1-2\end{array}\right]^{T}\right)=\left[\begin{array}{ll}3 & 4\end{array}\right]^{T}$ and $T\left(\left[\begin{array}{ll}-2 & 5\end{array}\right]^{T}\right)=\left[\begin{array}{ll}-1 & 4\end{array}\right]^{T}$, find $T\left(\left[\begin{array}{ll}-4 & 3\end{array}\right]^{T}\right)$ if T is a linear transformation.
7. Consider a Markov chain that starts in state 1 with transition matrix $P=\left[\begin{array}{ll}\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3}\end{array}\right]$.
(a) Explain why the chain is regular.
(b) Find the probability that the chain is in state 1 after 2 transitions.
(c) Find the steady-state vector for the chain.

Recommended Problems:

Pages 68-69: 1; 2a, b; 3a; 5a, b; 6 a,b; 7; 8b, c;
Pages 80-81: 1. b, c; 2. a; 3, 4, 5, 9, 10, 12; Pages 101-102: 1, 2, a, c;
Page 101-102: 1. a, b, f, g, h, k, l, m, n, o, p; 5. a, b; 6, 7, 8, 9, 11, 13, 14, 15;

