Practice Problems S5

1. Let A be an $n \times n$ matrix and $0 \neq k \in \mathbb{R}$. Prove that $\lambda \in \mathbb{R}$ is an eigenvalue of A if and only if $k \lambda$ is an eigenvalue of $k A$.
2. By inspection, find the eigenvalues of the following matrices:
(a) $A=\left[\begin{array}{ccc}3 & 1 & 4 \\ 0 & -2 & 2 \\ 0 & 0 & 5\end{array}\right]$; (b) $B=\left[\begin{array}{ccc}-2 & 0 & 0 \\ 1 & 2 & 5 \\ 4 & 0 & 4\end{array}\right]$.
3. Compute $P^{-1} A P$ and then A^{n} if $A=\left[\begin{array}{ll}6 & -5 \\ 2 & -1\end{array}\right]$ and $P=\left[\begin{array}{ll}5 & 1 \\ 2 & 1\end{array}\right]$.
4. Diagonalize the following matrices (i.e., find an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix if
(a) $A=\left[\begin{array}{lll}-4 & 1 & 4 \\ -2 & 1 & 2 \\ -3 & 1 & 3\end{array}\right]$; (b) $A=\left[\begin{array}{ccc}3 & 1 & 1 \\ -4 & -2 & -5 \\ 2 & 2 & 5\end{array}\right]$.
5. For which values of k does the matrix $A=\left[\begin{array}{ll}2 & 3 \\ k & 4\end{array}\right]$ have an eigenvalue of multiplicity 2 .
6. Determine whether the following matrices are diagonalizable or not:
(a) $A=\left[\begin{array}{cc}1 & 2 \\ 3 & -4\end{array}\right]$;
(b) $B=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$;
(c) $C=\left[\begin{array}{lll}1 & 0 & 3 \\ 2 & 1 & 2 \\ 0 & 0 & 2\end{array}\right]$.
7. Solve the following linear recurrences:
(a) $x_{k+2}=2 x_{k}-x_{k+1}$, where $x_{0}=1$ and $x_{1}=2$;
(b) $x_{k+3}=-2 x_{k}+x_{k+1}+2 x_{k+2}$, where $x_{0}=1$ and $x_{1}=2=x_{2}$.

Solutions

1. λ is an eigenvalue of A iff $0=\operatorname{det}\left(\lambda I_{n}-A\right)$ iff $0=k^{n} \operatorname{det}\left(\lambda I_{n}, A\right)=$ $\operatorname{det}\left(k \lambda I_{n}-k A\right)$ iff $k \lambda$ is an eigenvalue of $k A$.
2. (a) A is triangular, the entries of its main diagonal are eigenvalues; (b) $-2,2$ and 4.
3. $P^{-1}=\left[\begin{array}{ll}5 & 1 \\ 2 & 1\end{array}\right]^{-1}=\frac{1}{3}\left[\begin{array}{cc}1 & -1 \\ -2 & 5\end{array}\right]$. So, $P^{-1} A P=\left[\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right]=$ $\operatorname{diag}(4,1)$. It follows that $A=P \operatorname{diag}(4,1) P^{-1}$. Therefore,

$$
\begin{aligned}
A^{n} & =P \operatorname{diag}\left(4^{n}, 1\right) P^{-1} \\
& =\frac{1}{3}\left[\begin{array}{ll}
5 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
4^{n} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
-2 & 5
\end{array}\right] \\
& =\left[\begin{array}{ll}
5 / 34^{n}-2 / 3 & -5 / 34^{n}+5 / 3 \\
2 / 34^{n}-2 / 3 & -2 / 34^{n}+5 / 3
\end{array}\right] .
\end{aligned}
$$

4. (a) The matrix A has characteristic polynomial

$$
\begin{aligned}
&\left|\begin{array}{ccc}
\lambda+4 & -1 & -4 \\
2 & \lambda-1 & -2 \\
3 & -1 & \lambda-3
\end{array}\right|=\left|\begin{array}{ccc}
\lambda & -1 & -4 \\
0 & \lambda-1 & -2 \\
\lambda & -1 & \lambda-3
\end{array}\right| \\
&=\lambda\left|\begin{array}{ccc}
1 & 0 & -4 \\
0 & \lambda-1 & -2 \\
1 & 0 & \lambda-3
\end{array}\right|=\lambda(\lambda-1)\left|\begin{array}{cc}
1 & -4 \\
1 & \lambda-3
\end{array}\right| \\
&=\lambda(\lambda-1)(\lambda+1) .
\end{aligned}
$$

(First, add column 3 to column 1 and factor λ out. Then add column 1 to column 2, and use cofactor expansion along column 2 , factor $\lambda-1$. . Finally the determinant becomes easy). A has three eigenvalues $\lambda_{1}=-1, \lambda_{2}=0$ and $\lambda_{3}=1$.
Eigevectors corresponding to $\lambda_{1}=-1$: they are nonzero solutions to the homogeneous system $\left(-I_{3}-A\right) X=0$: (bring $-I_{3}-A$ to
the reduced row-echelon form)

$$
\left.\begin{array}{rl}
-I_{3}-A & =\left[\begin{array}{lll}
3 & -1 & -4 \\
2 & -2 & -2 \\
3 & -1 & -4
\end{array}\right]
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & -1 \\
3 & -1 & -4 \\
0 & 0 & 0
\end{array}\right]
$$

It follows that $X=t\left[\begin{array}{lll}\frac{3}{2} & \frac{1}{2} & 1\end{array}\right]^{T}, t \neq 0$; choose $X_{1}=\left[\begin{array}{lll}3 & 1 & 2\end{array}\right]^{T}$. In the same way, one gets the eigenvectors $X=t\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]^{T}, t \neq 0$, associated to $\lambda_{2}=0$, choose $X_{2}=\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]^{T}$; and $X=t\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{T}$, $t \neq 0$, associated to $\lambda_{3}=1$, choose $X_{3}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{T}$. The matrix $P=$ $\left[X_{1} X_{2} X_{3}\right]=\left[\begin{array}{lll}3 & 1 & 1 \\ 1 & 0 & 1 \\ 2 & 1 & 1\end{array}\right]$ with inverse $P^{-1}=\left[\begin{array}{ccc}1 & 0 & -1 \\ -1 & -1 & 2 \\ -1 & 1 & 1\end{array}\right]$, diagonalizes A :

$$
\begin{aligned}
P^{-1} A P & =\left[\begin{array}{ccc}
1 & 0 & -1 \\
-1 & -1 & 2 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
-4 & 1 & 4 \\
-2 & 1 & 2 \\
-3 & 1 & 3
\end{array}\right]\left[\begin{array}{lll}
3 & 1 & 1 \\
1 & 0 & 1 \\
2 & 1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]=\operatorname{diag}(-1,0,1) .
\end{aligned}
$$

(b) The characteristic polynomial of A is

$$
\operatorname{det}\left(x I_{3}-A\right)=\left|\begin{array}{ccc}
x-3 & -1 & -1 \\
4 & x+2 & 5 \\
-2 & -2 & x-5
\end{array}\right|=(x-1)(x-2)(x-3)
$$

(Substract colomn 3 from colomn 2, then factor (x-3)out colomn 2. Next substract colomn 3 from colomn 1 then add colomn 1 to colomn 1, and factor (x-2) out of colomn 1. Finally add row 1 and row 2 to row 3).
Thus A has three eigenvalues $\lambda_{1}=1, \lambda_{2}=2$ and $\lambda_{3}=3$. Eigenvectors: The homogeneous systems $\left(I_{3}-A\right) X=0,\left(2 I_{3}-A\right) X=$

0 and $\left(3 I_{3}-A\right) X=0$ have basic solutions $X_{1}=[1-31]^{T}$, $X_{2}=\left[\begin{array}{ll}1 & -1\end{array}\right]^{T}$ and $X_{3}=[0-11]^{T}$, respectively. There are basic eigenvectors correponding to the respective eigenvalues. The matrix $P=\left[X_{1} X_{2} X_{3}\right]=\left[\begin{array}{ccc}1 & 1 & 0 \\ -3 & -1 & -1 \\ 1 & 0 & 1\end{array}\right]$ diagonalizes A with $P^{-1} A P=\operatorname{diag}(1,2,3)$.
5. $\operatorname{det}\left(\lambda I_{2}-A\right)=\left|\begin{array}{cc}\lambda-2 & -3 \\ -k & \lambda-4\end{array}\right|=(\lambda-2)(\lambda-4)-3 k=\lambda^{2}-6 \lambda+8-3 k=$ $\lambda^{2}-6 \lambda+9-1+3 k=(\lambda-3)^{2}+1-3 k$. So, A has an eigenvalue with multiplicity 2 if $1-3 k=0$, i.e., $k=1 / 3$.
6. (a) Since the 2×2 matrix A has two distinct (or simple, i.e., with multiplicity 1) eigenvalues $\lambda_{1}=-5$ and $\lambda_{2}=2, A$ is diagonalizable.
(b) The matrix B has eigenvalue $\lambda=-1$ with multiplicity 2 . The matrix B is diagonalizable if there are two basic eigenvectors corresponding $\lambda=-1$. There are basic solutions to the homogeneous system $\left(-I_{3}-B\right) X=0$. So, $X_{1}=[-11,0]$ and $X_{2}=[-1,0,1]$ are two basic eigenvectors corresponding to $\lambda=-1$. The matrix B is diagolizable.
(c) The matrix C has an eigenvalue $\lambda=1$ of multiplicity 2 . For C to be diagonalizable, there must be two basic eigenvectors corresponding to $\lambda=1$. But the homogeneous system $\left(I_{3}-C\right) X=0$ has only one basic solution $X=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]^{T}$. Therefore, C is not diagonalizable.
7. (a) Define $V_{k}=\left[\begin{array}{c}x_{k} \\ x_{k+1}\end{array}\right]$ for all $k \geq 0$. We have $V_{0}=\left[\begin{array}{c}x_{0} \\ x_{1}\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $V_{k+1}=\left[\begin{array}{l}x_{k+1} \\ x_{k+2}\end{array}\right]=\left[\begin{array}{c}x_{k+1} \\ 2 x_{k}-x_{k+1}\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ 2 & -1\end{array}\right]\left[\begin{array}{c}x_{k} \\ x_{k+1}\end{array}\right]=$ $\left[\begin{array}{cc}0 & 1 \\ 2 & -1\end{array}\right] V_{k}$. We obtain a linear dynamical system: $V_{k}=A^{k} V_{0}$. Diagonalization of $A=\left[\begin{array}{cc}0 & 1 \\ 2 & -1\end{array}\right]: c_{A}(x)=\operatorname{det}\left(x I_{2}-A\right)=$ $\left|\begin{array}{cc}x & -1 \\ -2 & x+1\end{array}\right|=x(x+1)-2=x^{2}+x-2=(x-1)(x+2)$.
A has two simple eigenvalues $\lambda_{1}=-2$ and $\lambda_{2}=1$. Solving the homogeneous systems $\left(-2 I_{2}-A\right) X=0$ and $\left(I_{2}-A\right) X=0$, we find basic eigenvectors $X_{1}=\left[\begin{array}{ll}1 & -2\end{array}\right]^{T}$ and $X_{2}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ corresponding to the eigenvalues $\lambda_{1}=-2$ and $\lambda_{2}=1$, respectively. So, $P=\left[\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right]$, with inverse $P^{-1}=\frac{1}{3}\left[\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right]$ diagonalizes A. $B=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]=P^{-1} V_{0}=\frac{1}{3}\left[\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]=\frac{1}{3}\left[\begin{array}{c}-1 \\ 4\end{array}\right]$. It follows that $\left[\begin{array}{c}x_{k} \\ x_{k+1}\end{array}\right]=V_{k}=b_{1} \lambda_{1}^{k} X_{1}+b_{2} \lambda_{2}^{k} X_{2}=\frac{-1}{3}(-2)^{k} X_{1}+\frac{4}{3} X_{2}=$ $\frac{1}{3}\left[\begin{array}{c}-(-2)^{k}+4 \\ 2(-2)^{k}+4\end{array}\right]$. Therefore, $x_{k}=\left(4-(-2)^{k}\right) / 3$.
(b) Define $V_{k}=\left[\begin{array}{c}x_{k} \\ x_{k+1} \\ x_{k+2}\end{array}\right]$ for all $k \geq 0$. We have $V_{0}=\left[\begin{array}{c}x_{0} \\ x_{1} \\ x_{2}\end{array}\right]=$ $\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$ and

$$
\begin{aligned}
V_{k+1} & =\left[\begin{array}{l}
x_{k+1} \\
x_{k+2} \\
x_{k+3}
\end{array}\right]=\left[\begin{array}{cc}
x_{k+1} \\
x_{k+2} \\
-2 x_{k}+x_{k+1}+2 x_{k+2}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-2 & 1 & 2
\end{array}\right]\left[\begin{array}{c}
x_{k} \\
x_{k+1} \\
x_{k+2}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-2 & 1 & 2
\end{array}\right] V_{k} .
\end{aligned}
$$

The matrix $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & 1 & 2\end{array}\right]$ has eigenvalues $\lambda_{1}=2, \lambda_{2}=-1$ and $\lambda_{3}=1$ to which correspond the basic eigenvectors $X_{1}=$ $\left[\begin{array}{lll}1 & 2 & 4\end{array}\right]^{T}, X_{2}=\left[\begin{array}{lll}1 & -1 & 1\end{array}\right]^{T}$ and $X_{3}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{T}$, respectively. So, $P=\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & -1 & 1 \\ 4 & 1 & 1\end{array}\right]$ with inverse $P^{-1}=\frac{1}{6}\left[\begin{array}{ccc}-2 & 0 & 2 \\ 2 & -3 & 1 \\ 6 & 3 & -3\end{array}\right]$, is a diagonalizing matrix for A. With $B=\left[\begin{array}{lll}b_{1} & b_{2} & b_{3}\end{array}\right]^{T}=P^{-1} V_{0}=$ $[1 / 3,-1 / 3,1]$, we have $V_{k}=b_{1} \lambda_{1}^{k} X_{1}+b_{2} \lambda_{2}^{k} X_{2}+b_{3} \lambda_{3}^{k} X_{3}=2^{k} / 3 X_{1}-$

$$
(-1)^{k} / 3 X_{2}+X_{3}=\left[\begin{array}{c}
2^{k} / 3-(-1)^{k} / 3+1 \\
22^{k} / 3+(-1)^{k} / 3+1 \\
42^{k} / 3-(-1)^{k} / 3+1
\end{array}\right] . \text { Therefore, } x_{k}=
$$

$$
2^{k} / 3-(-1)^{k} / 3+1
$$

