
SOLUTIONS

1. (a) A =
h
7
5

2
5

i
; (b) A = 1

5

"
3 −2
0 6

#
.

2. (a) A = 4B; (b) A = −5
8
BT .

3. Every 1× 3 matrix A can be written in the form A =
h
a b c

i
for some scalars a, b and c.

Hence

A =
h
a 0 0

i
+
h
0 b 0

i
+
h
0 0 c

i
= a

h
1 0 0

i
+ b

h
0 1 0

i
+ c

h
0 0 1

i
.

If A =

⎡⎢⎣ ab
c

⎤⎥⎦ is a 3× 1 matrix then A = a
⎡⎢⎣ 10
0

⎤⎥⎦+ b
⎡⎢⎣ 01
0

⎤⎥⎦+ c
⎡⎢⎣ 00
1

⎤⎥⎦ in the same way.
4. If A = −A then adding A to both sides gives 2A = A + (−A) = 0. As 2 6= 0, this means
A = 0.

5. Suppose A is symmetric, that is AT = A. Then (cA)T = cAT = cA using Theorem 4 §1.1,
that is cA is symmetric.

6. (−A)T = ((−1)A)T = (−1)AT = −AT by Theorem 4 §1.1.

7. If A and B are symmetric then AT = A and BT = B. Hence Theorem 4 §1.1 and Exercise 6
give (A − B)T = (A + (−B))T = AT + (−B)T = AT + (−BT ) = AT − BT = A − B. Hence
A−B is also symmetric.

8. (a) If A is skew symmetric and 2× 2, write A =
"
a b
c d

#
for some scalars a, b, c and d. Since

AT = −A we have
"
a c
b d

#
= −

"
a b
c d

#
=

"
−a −b
−c −d

#
. Equating entries gives a = −a,

c = −b and d = −d. Hence A =
"
0 b
−b 0

#
for some scalar b.

(b) If A and B are skew-symmetric then AT = −A, and BT = −B. Hence (A + B)T =
AT +BT = −A+(−B) = −(A+B), so A+B is skew symmetric. Similarly, (cA)T = cAT =
c(−A) = −(cA) shows that cA is skew-symmetric for any scalar c.

9. As in the Hint: 1
2
(A+AT )+ 1

2
(A−AT ) = 1

2
A+ 1

2
AT+ 1

2
A− 1

2
AT = A. If we take S = 1

2
(A+AT )

and W = 1
2
(A−AT ) then A = S +W and:

ST = 1
2
(AT +ATT ) = 1

2
(AT +A) = S, so S is symmetric,

W T = 1
2
(AT −ATT ) = 1

2
(AT −A) = −W, so W is skew-symmetric.

10. (a) x1 = −1− 2r − 3s− t, x2 = r, x3 = 2 + s− t, x4 = s, x5 = t and x6 = 3.
(b) x1 = −1− 7s− t, x2 = 0, x3 = s, x4 = 3 + 3t, x5 = t and x6 = 0.

11. (a) rank is 3 (b) rank is 2

(c) rank is 2 if a = 5, and rank is 3 if a 6= 5.
(d) rank is 2 if a = 1, and rank is 3 if a 6= 1.
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12. The rank r of the augmented matrix satisfies r ≤ 5 because there are 5 equations. Hence
there are 7− r ≥ 2 parameters by Theorem 3 §1.2, and so there is more than one solution.

13. The system may have no solution. So assume it is consistent. The rank of the augmented
matrix is r = 4, and there are n = 4 variables, so there are n − r = 0 parameters. In other
words, the solution is unique.

14. The solutions are the coordinates of points lying on all three planes. If the three planes are
all parallel, there is no solution unless they all coincide, in which case there are infinitely
many solutions (any point on the common plane). If two of the planes are not parallel, they
intersect in a line. If this line is not parallel to the third plane, it meets it in a unique solution;
otherwise the line is either in the third plane (infinitely many solutions) or it does not meet
the third plane (no solution).

15. If A→ B by a row interchange, the reverse is the same interchange.

If A→ B by multiplying a row by c 6= 0, the reverse is multiplying by 1/c.
If A→ B by adding c times row i to row j, the reverse is subtracting c times row i from row
j.

16.

⎡⎢⎣ bi + cici + ai
ai + bi

⎤⎥⎦→
⎡⎢⎣ bi + ciai − bi
ai + bi

⎤⎥⎦→
⎡⎢⎣ bi + ci2ai
ai + bi

⎤⎥⎦→
⎡⎢⎣ bi + ciai

bi

⎤⎥⎦→
⎡⎢⎣ ciai
bi

⎤⎥⎦→
⎡⎢⎣ aici
bi

⎤⎥⎦→
⎡⎢⎣ aibi
ci

⎤⎥⎦
17. x2 + y2 − 3x− 1

3
y − 4

3
= 0.

18. f(x) = 1− 2x+ 3x2.

19. (a) If a = 2, x1 = t, x2 = t and x3 = t; if a 6= 2, x1 = x2 = x3 = 0.
(b) If a = −3, x1 = 9t, x2 = −5t and x3 = t; if a 6= −3, x1 = x2 = x3 = 0.
(c) If a 6= 0 and a 6= −1, then x1 = x2 = x3 = 0;

If a = 0 then x3 = 0, x1 = −t and x2 = t;
If a = −1 then x1 = 3t, x2 = −2t and x3 = t.

(d) If a 6= 1 and a 6= −1, then x1 = x2 = x3 = 0;
If a = 1 then x3 = 0, x1 = −t and x2 = t;
If a = −1 then x1 = t, x2 = 0and x3 = t.

20. (a) If xA+ yB + zC = 0 then equating corresponding entries gives

x + z = 0
−x + 3y + z = 0

y + 2z = 0

The only solution is x = y = z = 0, so {A,B,C} is linearly independent.

(b) 3

"
1
−1

#
+ 2

"
0
3

#
− 3

"
1
1

#
=

"
0
0

#
so these matrices are not linearly independent.
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21. Given points (x1, y1) and (x2, y2), the line with equation ax+ by+ c = 0 passes through these
points if ax1 + by1 + c = 0 and ax2 + by2 + c = 0. These are two homogeneous equations in
the three variables a, b and c, and so has a nontrivial solution by Theorem 1 § 1.3. The line
corresponding to this solution will contain both points.

22. Given points (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3), the plane with equation ax+by+cz+d =
0 passes through these points if ax1 + by1 + cz1 + d = 0, ax1 + by1 + cz2 + d = 0 and
ax1 + by1 + cz3 + d = 0. These are three homogeneous equations in the four variables a, b, c
and d, and so has a nontrivial solution by Theorem 1 § 1.3. The plane corresponding to this
solution will contain all three points.

23. [x y z]T = [1 + 3t 1− 5t t]T .

24.

⎡⎢⎣ 1 0 2 1
0 1 −1 −3
0 0 0 0

⎤⎥⎦ .
25. [x y z]T = [15

2
− 4 − 1

2
]T .

26. [x1 x2 x3 x4 x5 ]
T = [2 + s− 5t s − 3− 2t 2t t]T .

27.

⎡⎢⎣ 1 −1 2 a
2 −1 3 b
−1 2 −3 c

⎤⎥⎦→
⎡⎢⎣ 1 −1 2 a
0 1 −1 b− 2a
0 1 −1 c+ a

⎤⎥⎦→
⎡⎢⎣ 1 0 1 b− a
0 1 −1 b− 2a
0 0 0 c+ 3a− b

⎤⎥⎦ .
Hence if c 6= b− 3a there is no solution.
If c = b− 3a there are infinitely many solutions: [x y z]T = [b− a− t b− 2a+ t t]T .

28.

⎡⎢⎣ 1 −1 2 a
2 1 −1 3
1 5 −8 1

⎤⎥⎦→
⎡⎢⎣ 1 −1 2 a
0 3 −5 3− 2a
0 6 −10 1− a

⎤⎥⎦→
⎡⎢⎣ 1 −1 2 a
0 3 −5 3− 2a
0 0 0 3a− 5

⎤⎥⎦ .
Hence if a 6= 5

3
there is no solution.

If a = 5
3
there are infinitely many solutions.

29. False. If

"
1 0 −1 2
0 1 −1 3

#
is the augmented matrix, there is no row of zeros but infinitely

many solutions: x = 2 + t, y = 3 + t, z = t.

30. The reduction of the augmented matrix to reduced row-echelon form is:⎡⎢⎢⎢⎣
1 −1 2 2 3 −4
−2 3 −6 −3 −11 11
−1 2 −4 1 −8 7
0 1 −2 3 −5 3

⎤⎥⎥⎥⎦→
⎡⎢⎢⎢⎣
1 0 0 0 −2 −1
0 1 −2 0 −5 3
0 0 0 1 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎦ .
Hence [x1 x2 x3 x4 x5]

T = [−1 + 2t 3 + 2s+ 5t s 0 t]T .

31.

⎡⎢⎣ 1 0 1 0 −2 −2
0 1 0 0 0 3
0 0 0 1 1 6

⎤⎥⎦ .
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32. (a) 3AB + 4BA.

(b) AB −BA
(c) CA2C −ABCB
(d) 0

33. If A =

"
a b
b d

#
then 0 = A2 =

"
a2 + b2 ab+ bd
ab+ bd b2 + d2

#
. Hence a2 + b2 = 0 = b2 + d2 and it

follows (since a, b and d are real numbers) that a = b = d = 0. Hence A = 0.

34. AAT =

"
a2 + b2 + c2 aa1 + bb1 + cc1
aa1 + bb1 + cc1 a21 + b

2
1 + c

2
1

#
. So AAT = 0 means a2+b2+c2 = 0 = a21+b

2
1+c

2
1.

Since A has real entries, this means a = b = c = 0 and a1 = b1 = c1 = 0; that is A = 0.

35. Write B = AAT . Using Theorem 1 §1.4, we get BT = (AAT )T = ATTAT = AAT = B. Hence
B is a symmetric matrix.

36. We are given that CA = AC and CB = BC. Hence

C(2A− 3B) = 2CA− 3CB = 2AC − 3BC = (2A− 3B)C.
Hence 2A− 3B commutes with C too.

37. We use Theorem 3 §1.5.

AT − 3
"
1 0
2 −1

#
=

(
AT − 3

"
1 0
2 −1

#)−1−1
=

"
2 1
1 1

#−1
=
1

1

"
1 −1
−1 2

#
.

Hence AT = 3

"
1 0
2 −1

#
+

"
1 −1
−1 2

#
=

"
4 −1
5 −1

#
, so A = ATT =

"
4 5
−1 −1

#
.

38. We use Theorem 3 §1.5.

A− 2I = (A− 2I)−1−1 =
(
A−1

"
0 1
−1 3

#)−1
=

"
0 1
−1 3

#−1
A−1−1 =

1

1

"
3 −1
1 0

#
A.

Thus 2I = A−
"
3 −1
1 0

#
A =

("
1 0
0 1

#
−
"
3 −1
1 0

#)
A =

"
−2 1
−1 1

#
A. Hence

A =

"
−2 1
−1 1

#−1
2I = 2

(
1

−1

"
1 −1
1 −2

#)
= 2

"
−1 1
−1 2

#
.

39. If it happens that A−1 exists, then AX = 0 gives A−1AX = A−10, that is IX = 0, that is
X = 0. This is contrary to our assumption, so A−1 does not exist.

40. U is invertible because detU = 15 + 28 6= 0. So AU = 0 gives A = AI = AUU−1 = 0U−1 = 0.

41. Since B is invertible, we have A = (AB)B−1, and this is invertible by Theorem 3 §1.5 because
both AB and B−1 are invertible.

42. Since AB = cI, multiplying by 1
c
gives A(1

c
B) = I. Hence (1

c
B)A = I by Corollary 2 of

Theorem 5 §1.5. Multiplying by c gives BA = cI, as required. The result is false if c = 0,
even for 2× 2 matrices: If A =

"
0 1
0 0

#
and B =

"
1 1
0 0

#
then AB = 0 but BA 6= 0.
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43. Write the equation A3− 2A2+5A+6I = 0 in the form A(A2− 2A+5) = −6I so A · 1
6
() = I.

Similarly 1
6
(−A2 + 2A − 5) · A = I. These equations show that A is invertible and that

A−1 = 1
6
(−A2 + 2A− 5).

44. Showing that A−1 = A is the same as showing that A2 = I. Since we have E2 = E, we have

A2 = (I − 2E)2 = (I − 2E)(I − 2E) = I2 − 2IE − 2EI + 4E2 = I − 2E − 2E + 4E = I.

45. Using the matrix inversion algorithm (or otherwise), we have A−1 =

⎡⎢⎣ −10 4 3
−8 3 2
−3 1 1

⎤⎥⎦ .
46. If row 1 of A consists of zeros then Y A = 0 where Y = [1 0 0 · · · 0]. Hence if A−1 exists then

Y = Y I = Y AA−1 = 0A−1 = 0, a contradiction. So A−1 does not exist.

47. To solve AX = B, left multiply both sides by A−1 to get A−1AX = A−1B, that is X = A−1B.
So every solution (if there is one) must equal A−1B. But X = A−1B is indeed a solution
because AX = A(A−1B) = IB = B.

48. det

⎡⎢⎣ a+ 2x b+ 2y c+ 2z
x+ p y + q z + r
3p 3q 3r

⎤⎥⎦ = 3 det
⎡⎢⎣ a+ 2x b+ 2y c+ 2z
x+ p y + q z + r
p q r

⎤⎥⎦

= 3 det

⎡⎢⎣ a+ 2x b+ 2y c+ 2z
x y z
p q r

⎤⎥⎦ = 3 det
⎡⎢⎣ a b c
x y z
p q r

⎤⎥⎦ = −3 det
⎡⎢⎣ a b c
p q r
x y z

⎤⎥⎦ = −15.

49. Compute det

⎡⎢⎣ 1 c 0
2 0 c
c −1 1

⎤⎥⎦ = det

⎡⎢⎣ 1 0 0
2 −2c c
c −1− c2 1

⎤⎥⎦ = det

"
−2c c
−1− c2 1

#
= c(c2 − 1) =

c(c− 1)(c+ 1).

Hence the matrix is invertible if c 6= 0, 1 and −1.

50. Using the matrix inversion algorithm we have

⎡⎢⎣ 1 −1 −2
−1 0 1
2 1 0

⎤⎥⎦
−1

=

⎡⎢⎣ 1 2 1
−2 −4 −1
1 3 1

⎤⎥⎦ .
The equations are AX = B in matrix form where B = [3 0 1]T , so the solution is

X = A−1B =

⎡⎢⎣ 1 2 1
−2 −4 −1
1 3 1

⎤⎥⎦
⎡⎢⎣ 30
1

⎤⎥⎦ =
⎡⎢⎣ 4
−7
4

⎤⎥⎦ .

51. detB = det

⎡⎢⎣ 2x a+ 2p p− 3x
2y b+ 2q q − 3y
2z c+ 2r r − 3z

⎤⎥⎦ = 2 det
⎡⎢⎣ x a+ 2p p− 3x
y b+ 2q q − 3y
z c+ 2r r − 3z

⎤⎥⎦ = 2 det
⎡⎢⎣ x a+ 2p p
y b+ 2q q
z c+ 2r r

⎤⎥⎦ =

2 det

⎡⎢⎣ x a p
y b q
z c r

⎤⎥⎦ = 2 det
⎡⎢⎣ x y z
a b c
p q r

⎤⎥⎦ = −2 det
⎡⎢⎣ a b c
x y z
p q r

⎤⎥⎦
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= 2 det

⎡⎢⎣ a b c
p q r
x y z

⎤⎥⎦ = 2 detA = 6. Finally det(−2B−1) = (−2)3 1

detB
= −8

6
= −4

3
.

52. If A2 = −I then (detA)2 = detA2 = det(−I) = (−1)3 = −1. This is impossible as detA is a
real number.

53. det

⎡⎢⎣ p+ x q + y r + z
a+ x b+ y c+ z
a+ p b+ q c+ r

⎤⎥⎦ = det
⎡⎢⎣ p− a q − b r − c
a+ x b+ y c+ z
a+ p b+ q c+ r

⎤⎥⎦ = det
⎡⎢⎣ 2p 2q 2r
a+ x b+ y c+ z
a+ p b+ q c+ r

⎤⎥⎦

= 2 det

⎡⎢⎣ p q r
a+ x b+ y c+ z
a+ p b+ q c+ r

⎤⎥⎦ = 2 det
⎡⎢⎣ p q r
a+ x b+ y c+ z
a b c

⎤⎥⎦ = 2 det
⎡⎢⎣ p q r
x y z
a b c

⎤⎥⎦

= −2 det

⎡⎢⎣ a b c
x y z
p q r

⎤⎥⎦ = 2 det
⎡⎢⎣ a b c
p q r
x y z

⎤⎥⎦ .

54. det

⎡⎢⎢⎢⎣
1 a p q
x 1 b r
x2 x 1 c
x3 x2 x 1

⎤⎥⎥⎥⎦ = det
⎡⎢⎢⎢⎣
1− ax a p q
0 1 b r
0 x 1 c
0 x2 x 1

⎤⎥⎥⎥⎦ = (1− ax)det
⎡⎢⎣ 1 b r
x 1 c
x2 x 1

⎤⎥⎦

= (1− ax)det

⎡⎢⎣ 1− bx b r
0 1 c
0 x 1

⎤⎥⎦ = (1− ax)(1− bx)det " 1 c
x 1

#
= (1− ax)(1− bx)(1− cx).

55. (a)

⎡⎢⎣ a 3− a a+ 1
b 3− b b+ 1
c 3− c c+ 1

⎤⎥⎦→
⎡⎢⎣ a 3 1
b 3 1
c 3 1

⎤⎥⎦ so A has zero determinant.

(b)

⎡⎢⎣ a b c
a+ b 2b c+ b
3 3 3

⎤⎥⎦→
⎡⎢⎣ a b c
b b b
3 3 3

⎤⎥⎦ so A has zero determinant.

56. detB = det

"
a+ c 2c
b+ d 2d

#
= 2 det

"
a c
b d

#
= 2 det(AT ) = 2 detA = 4. Hence

det(A2BTA−1) = (detA)2 detB
1

detA
= 8.

57. det

⎡⎢⎣ x− 1 2 3
2 −3 x− 2
−2 x −2

⎤⎥⎦ = det
⎡⎢⎣ x− 1 x− 1 x− 1

2 −3 x− 2
−2 x −2

⎤⎥⎦ = det
⎡⎢⎣ x− 1 0 0

2 −5 x− 4
−2 x+ 2 0

⎤⎥⎦
= −(x− 1)(x+ 2)(x− 4). Hence the determinant is zero if x = 1, −2 or 4.

58. If A2 = 3A then (detA)2 = det(A2) = det(3A) = 34detA. Hence either detA = 0 or detA =
34 = 81.
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59. det

⎡⎢⎣ 3 −3 0
c+ 5 −5 3a
d− 2 2 3b

⎤⎥⎦ = 3det
⎡⎢⎣ 3 −3 0
c+ 5 −5 a
d− 2 2 b

⎤⎥⎦ = 3 det
⎡⎢⎣ 3 0 0
c+ 5 c a
d− 2 d b

⎤⎥⎦ = 3 (3 det " c a
d b

#)

= −9det
"
a c
b d

#
= −9 detA = 27.

60. If AB = −BA then detA detB = det(AB) = det(−BA) = (−1)ndet(BA) = −detAdetB.
Since detA and detB are numbers, this gives 2 detA detB = 0. Hence detA = 0 or detB = 0.

61. We have A−1 =
1

detA
adjA = 1

2
adjA, so adjA = 2 detA. Using the fact that A−1 is of size

4× 4, this gives

det(A−1 − 6 adjA) = det(15A−1 − 12A−1) = det(3A−1) = 34det(A−1) = 811
2
= 81

2
.

62. (a) detA = 2c2−c−1 = (2c+1)(c−1) so A is invertible unless c = −1
2
or c = 1. If c 6= −1

2
and

c 6= 1 then A−1 = 1

2c2 − c− 1

⎡⎢⎣ 2c+ 1 −2c− 1 0
−2 + c c −c+ 1
−1− c2 c+ c2 c2 − c

⎤⎥⎦ .

(b) Here detA = 2 for all values of c, so A is invertible and A−1 =
1

2

⎡⎢⎣ 8− c2 −c c2 − 6
c 1 −c

c2 − 10 c 8− c2

⎤⎥⎦ .
63. In each case we use Theorem 3 §2.2 twice.

(a) det

⎡⎢⎣ A X Y
0 B Z
0 0 C

⎤⎥⎦ = detA det " B Z
0 C

#
= detA (detB detC) = −6.

(b) det

⎡⎢⎣ A X 0
0 B 0
Y Z C

⎤⎥⎦ = det " A X
0 B

#
detC = (detA detB)detC = −6.

64. As in the Hint:

"
0 I2
I3 0

# "
0 B
A X

#
=

"
A X
0 B

#
. Hence det

"
0 I2
I3 0

#
det

"
0 B
A X

#
=

detAdetB. But det

"
0 I2
I3 0

#
= 1 by direct calculation, and the result follows.

65. cA(x) = det

"
x −2
−2 x+ 3

#
= (x− 1)(x+ 4) so λ1 = 1 and λ2 = −4 are the eigenvalues.

λ1I −A =
"
1 −2
−2 4

#
→

"
1 −2
0 0

#
, so X1 =

"
2
1

#
is an eigenvector.

λ2I −A =
"
−4 −2
−2 −1

#
→

"
2 1
0 0

#
, so X2 =

"
−1
2

#
is an eigenvector.

Hence P = [X1 X2] =

"
2 −1
1 2

#
has P−1AP = D =

"
λ1 0
0 λ2

#
=

"
1 0
0 −4

#
.
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66. cA(x) = det

"
x+ 2 −1
−4 x− 1

#
= (x− 2)(x+ 3) so λ1 = 2 and λ2 = −3 are the eigenvalues.

λ1I −A =
"
4 −1
−4 1

#
→

"
4 −1
0 0

#
, so X1 =

"
1
4

#
is an eigenvector.

λ2I −A =
"
−1 −1
−4 −4

#
→

"
1 1
0 0

#
, so X2 =

"
−1
1

#
is an eigenvector.

Hence P = [X1 X2] =

"
1 −1
4 1

#
has P−1AP = D =

"
λ1 0
0 λ2

#
=

"
2 0
0 −3

#
.

67. Solution 1. cA(x) = det

"
x −1
1 x− 2

#
= (x − 1)2, so λ1 = 1 is the only eigenvalue (of

multiplicity 2). Here λ1I − A =
"
1 −1
1 −1

#
→

"
1 −1
0 0

#
, so X1 =

"
1
1

#
is the only basic

eigenvector. Hence A is not diagonalizable by Theorem 5 §2.3.
Solution 2. If A were diagonalizable, there would exist an invertible matrix P such that

P−1AP =

"
λ1 0
0 λ1

#
= I. Hence A = PIP−1 = I, a contradiction. SoA is not diagonalizable.

68. Let Ak = 0 where k ≥ 1. If λ is an eigenvalue of A then AX = λX for some eigenvector
X 6= 0. Hence A2X = A(λX) = λ(AX) = λ(λX) = λ2X. Similarly, A3X = λ3X, and
eventually AkX = λkX. Since Ak = 0, this gives λkX = 0, and so λk = 0 because X 6= 0.
Thus λ = 0.

69. Since A is diagonalizable, there exists an invertible matrix P such that P−1AP = D is
diagonal. But the diagonal entries of D are just the eigenvalues of A in some order, so D = 0
by hypothesis. Hence P−1AP = 0, so that A = P0P−1 = 0.

70. If λ is an eigenvalue of A then AX = λX for some eigenvector X 6= 0. Then (as above)
A2X = λ2X. But A2 = A so this gives λ2X = AX = λX. Hence (λ2 − λ)X = 0, whence
λ2 = λ because X 6= 0. This means that λ = 0 or λ = 1.

71. Let P−1AP = D = diag(λ1,λ2, · · · ,λn) where the λi are the eigenvalues of A. Since we are
assuming that λ2i = λi for each i, we have D

2 = diag(λ21,λ
2
2, · · · ,λ2n) = diag(λ1,λ2, · · · ,λn) =

D. Hence, A2 = (PDP−1)2 = PD2P−1 = PDP−1 = A.

72. Let P−1AP = D where D is diagonal. Then (PAP−1)2 = D2, that is PA2P−1 = D2. Since
D2 is also diagonal, this shows that A2 is also diagonalizable (with the same P ).

73. Let P−1AP = D whereD is diagonal. Then (PAP−1)T = DT = D, that is (P−1)TATP T = D.
If we write Q = P T , then Q−1 = (P T )−1 = (P−1)T , so we have Q−1ATQ = D. This shows
that AT is diagonalizable.

74. cA(x) = det

⎡⎢⎣ x− 2 −1 −1
−1 x− 1 1
−1 −1 x− 2

⎤⎥⎦ = det
⎡⎢⎣ x− 3 −1 −1

0 x− 1 1
x− 3 −1 x− 2

⎤⎥⎦ after adding column 3 to
column 1. It follows that cA(x) = (x − 1)2(x − 3), so λ1 = 1 is an eigenvalue of multiplicity
2. The basic eigenvectors corresponding to λ1 are the basic solutions to the equations(λ1I −
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A)X = 0. The reduction of the augmented matrix is [λ1I − A 0] =

⎡⎢⎣ −1 −1 −1 0
−1 0 1 0
−1 −1 −1 0

⎤⎥⎦ →
⎡⎢⎣ 1 0 −1 0
0 1 2 0
0 0 0 0

⎤⎥⎦ . Hence X2 =
⎡⎢⎣
⎡⎢⎣ −1−2
1

⎤⎥⎦
⎤⎥⎦ is the only basic eigenvector corresponding to λ1,

so A is not diagonalizable by Theorem 5 §2.3.

75. Here cA(x) = det

⎡⎢⎣ x −1 −1
−1 x −1
−2 0 x

⎤⎥⎦ = det
⎡⎢⎣ x− 2 −1 −1x− 2 x −1
x− 2 0 x

⎤⎥⎦ after adding columns 2 and 3
to column 1. Hence cA(x) = (x + 1)

2(x − 2), so λ1 = −1 is an eigenvalue of multiplicity 2.
But the basic eigenvectors corresponding to λ1 are the basic solutions to the homogeneous

system (λ1I−A)X = 0. The augmented matrix is reduced as follows:

⎡⎢⎣ −1 −1 −1 0
−1 −1 −1 0
−2 0 −1 0

⎤⎥⎦→
⎡⎢⎣ 1 1 1 0
0 2 1 0
0 0 0 0

⎤⎥⎦ , so there is only one parameter, and so only one basic solution. Since the
multiplicity of λ1 is 2, this shows that A is not diagonalizable by Theorem 5 §2.3.

76. Let P−1AP = D = diag(λ1,λ2, · · · ,λn) where the λi are the eigenvalues of A. Since we are
assuming that λi ≥ 0 for each i, D0 = diag(

√
λ1,
√
λ2, · · ·

√
λn) is a real diagonal matrix such

that D2
0 = D. Put B = PD0P

−1. Then B2 = (PD0P
−1)2 = PD2

0P
−1 = PDP−1 = A.

77. Let P−1AP = D = diag(λ1,λ2, · · · ,λn) where the λi are the eigenvalues of A.We are assuming
that each λi = λ, so P−1AP = diag(λ,λ, · · · ,λ) = λI. Hence A = P (λI)P−1 = λI.

78. Let P−1AP = D = diag(λ1,λ2, · · · ,λn) where the λi are the eigenvalues of A. Then A =

PDP−1 so detA = detP detD
1

detP
= detD = λ1λ2 · · ·λn.

79. detA = (1 + i) + i2 = i, so A−1 =
1

i

"
1 + i −i
i 1

#
= (−i)

"
1 + i −i
i 1

#
=

"
1− i −1
1 −i

#
.

80. If we write z = 2−3i, then the quadratic (x−z)(x−z̄) = x2−(z+z̄)x+zz̄ has real coefficients.
Indeed, z + z̄ = 4 is twice the real part of z, and zz̄ = 13 = |z|2 is the square of the absolute
value of z. So the required polynomial is x2 − 4x+ 13. The other root is z̄ = 2 + 3i.

81. w2 − 6w + 13 = (5− 12i)− (18− 12i) + 13 = 0. The other root is w̄ = 3 + 2i.

82. z̄ = (1 + i)n + (1− i)n = (1 + i)n + (1− i)n = (1 + i)n + (1− i)n = (1 − i)n + (1 + i)n = z.
Hence z is real.

83. z(
1

|z|2
z̄) =

1

|z|2
(zz̄) =

1

|z|2
(|z|2) = 1. The result follows.

84. If zw is real and z 6= 0, then w
z̄
=
zw

zz̄
=
zw

|z|2
is real. So take r =

zw

|z|2
.
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85. By the Hint: |z + w|2 + |z − w|2 = (z + w)(z̄ + w̄) + (z − w)(z̄ − w̄)
= (zz̄ + zw̄ + wz̄ + ww̄) + (zz̄ − zw̄ − wz̄ + ww̄)
= 2(zz̄ + ww̄)

= 2(|z|2 + |w|2).

86. Let ~p = [2 − 1 5]T and ~q = [3 0 4]T be the position vectors of the points. The position vector
of the point 1

5
the way from ~p to ~q is ~t = ~p+ 1

5
(~q − ~p) = 4

5
~p+ 1

5
~q = 1

5
[11 − 4 24]T .

87. Let ~p = [1 2 3]T and ~q = [8 − 2 0]T be the position vectors of the points. The position vector
of the two points are ~t1 = ~p+

1
3
(~q−~p) = 2

3
~p+ 1

3
~q = 2

3
[5 1 3]T and ~t2 = ~p+

2
3
(~q−~p) = 1

3
~p+ 2

3
~q =

1
3
[17 − 2 3]T .

88.
−→
AE =

−→
AB +

−→
BE and also

−→
AE =

−→
AC +

−→
CE. Hence

−→
AE = 1

2
(
−→
AE +

−→
AE) = 1

2
[(
−→
AB +

−→
BE) + (

−→
AC +

−→
CE)] = 1

2
[
−→
AB +

−→
AC]

because
−→
BE = −−→CE (since E is the midpoint of BC).

89. The diagonals are

[1 1 1]T − [0 0 0]T = [1 1 1]T , [0 1 1]T − [1 0 0]T = [−1 1 1]T ,
[1 0 1]T − [0 1 0]T = [1 − 1 1]T , [1 1 0]T − [0 0 1]T = [1 1 − 1]T .

No pair is orthogonal as the dot products are all nonzero.

90. (a) Let ~v1 = proj~d(~v) = (
~v•~d
|~d|2 )

~d = 1
2
~d = 1

2
[1 2 1]T . Then ~v2 = ~v−~v1 = 1

2
[5 − 4 3]T . A check on

the arithmetic is that ~v2 • ~d = 0 should hold.
(b) Let ~v1 = proj~d(~v) = (

~v•~d
|~d|2 )

~d = 1
2
~d = 1

2
[3 0 − 7]T . Then ~v2 = ~v − ~v1 = 1

2
[7 2 3]T .

91. We have k~v + ~wk2 = k~vk2+2~v • ~w+k~wk2 . Hence the condition k~vk2+k~wk2 = k~v + ~wk2 gives
2~v • ~w = 0, that is ~v • ~w = 0. This means that ~v and ~w are orthogonal.

92. Here ~d = [−5 0 2]T from the given line, so the equation is [x y z]T = [3 − 1 2]T + t[−5 0 2]T .

93. Now ~d =
−−→
P1P2 = [1 1 1]

T , so the line is [x y z]T = [1 0 − 2]T + t[1 1 1]T .

94. Every point on the line has the form [x y z]T = [2 + t − 1 − t 3 − 4t]T . This point lies
on the plane if 3(2 + t) + (−1 − t) − 2(3 − 4t) = 4, which gives t = 1

2
. Hence the point

is[x y z]T = [5
2
− 3

2
1]T .

95. The point P0(3,−1, 0) is in the plane, so the vector ~v =
−−→
P0P = [−2 2 − 2]T is in the plane.

Since ~d = [1 1 − 1]T is also in the plane, a normal is ~n = ~v× ~d = [0 − 4 − 4]T . Thus the lane
has equation y + z = k for some number k. Since P0(3,−1, 0) lies in the plane, k = −1, and
the equation is y + z = −1.

96. The normal ~n = [1 1 − 2]T will serve as direction vector of the line (it is perpendicular to the
plane). As P (1,−1, 0) is in the line, the equation is [x y z]T = [1 − 1 0]T + t[1 1 − 2]T .

97. As the planes are parallel, the normal ~n = [4 − 3 1]T of the given plane will serve for the new
one. So the new plane has equation 4x− 3y + z = d for some scalar d. Since P0(2, 3,−1) lies
in the new plane, d = −2 and the equation is 4x− 3y + z = −2.
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98. Write P0 = P0(1, 2, 0) and v̄ =
−−→
P0P = [−1 − 1 2]T . Compute ~v1 = proj~d(~v) = 1

6
[2 − 1 1]T .

The position vector of Q is then ~q = ~p0 + ~v1 =
1
6
[8 11 1]T .

99. A normal to the plane is ~n = [5 − 7 2]T . Choose any point in the plane, say P0(1, 0,−1), and
write ~v =

−−→
P0P = [0 0 3]

T . Then the shortest distance from P to the plane is kproj~n(~v)k =°°°°°(~v • ~nk~nk2
)~n

°°°°° = |~v • ~n|
k~nk =

6√
78
.

100. Write P0 = P0(1,−1, 0), ~v =
−−→
P0P = [0 1 2]

T and ~d = [2 1 1]T . Compute ~v1 = proj~d(~v) =
1
2
~d.

Then the shortest distance is k~v − ~v1k =
°°°1
2
[−2 1 3]T

°°° = 1
2

√
14.

101. The plane in question has equation 2x − 3y + 2z = d for some number d (using the same
normal as the given plane). As it contains the point P0(1,−1, 0), we obtain d = 5, so the
equation is 2x− 3y + 2z = 5. This does not pass through the origin.

102. We have
−→
AB = [−1 − 1 − 1]T , −→AC = [0 1 − 4]T and −→BC = [1 2 − 3]T . Hence −→AB •−→BC = 0

so the angle at B is a right angle. If θ is the internal angle at C then, since
−→
CA = [0 − 1 4]T

and
−→
CB = [−1 − 2 3]T , we have cosθ =

−→
CA •−→CB°°°−→CA°°° °°°−→CB°°° =

14√
17
√
14
=

√
14
√
17

17
.

103.
−→
AB = [−1 1 0]T and −→AC = [−1 0 1]T . The area of the triangle is half the area of the
parallelogram, that is 1

2

°°°−→AB ×−→AC°°° = 1
2

°°°[1 1 1]T°°° = √
3
2
.

104. Rotation through π/2 has matrix Rπ/2 =

"
0 −1
1 0

#
, and reflection in the line y = x has

matrix Q1 =

"
0 1
1 0

#
. Thus the transformation in question has matrix Q1Rπ/2 =

"
1 0
0 −1

#
,

which is Q0–reflection in the X-axis.

105. Reflection in the line y = −3x is given by Q−3 =
1

10

"
−8 −6
−6 8

#
=
1

5

"
−4 −3
−3 4

#
. Hence the

reflection of

"
2
−3

#
in y = −3x is 1

5

"
−4 −3
−3 4

# "
2
−3

#
=
1

5

"
1
−18

#
.

106. (a) The matrix isA =

"
T

"
1
0

#
T

"
0
1

##
.We are given T

"
0
1

#
=

"
3
−2

#
, and also T

"
1
1

#
="

5
7

#
. Now observe that

"
1
0

#
=

"
1
1

#
−
"
0
1

#
so, as T is linear, T

"
1
0

#
= T

"
1
1

#
−

T

"
0
1

#
=

"
2
9

#
. Hence the matrix of T is A =

"
T

"
1
0

#
T

"
0
1

##
=

"
2 3
9 −2

#
. This gives

T

"
x
y

#
= A

"
x
y

#
=

"
2 3
9 −2

# "
x
y

#
=

"
2x+ 3y
9x− 2y

#
.

(b) The matrix of T−1 is A−1 =
1

−31

"
−2 −3
−9 2

#
=

1

31

"
2 3
9 −2

#
. Hence T−1

"
2
2

#
=

A−1
"
2
2

#
=
1

31

"
10
14

#
.
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