MATHEMATICS 221 L03/11 B09/10 FALL 2004

 QUIZ 1 SOLUTION Wednesday, September 22, 2004 at 15:00[10] 1. Find conditions on the constant a so that the following system has (i) no solution, (ii) exactly one solution or (ii) infinitely many solutions.

$$
\begin{aligned}
x+ & a y- & z & =1 \\
-x+ & (a-2) y+ & = & -1 \\
2 x+ & 2 y+ & (a-2) z & =1
\end{aligned}
$$

Solution:

Solution:
$\left[\begin{array}{cccc}1 & a & -1 & 1 \\ -1 & a-2 & 1 & -1 \\ 2 & 2 & a-2 & 1\end{array}\right] \begin{gathered} \\ R_{2}+R_{1} \\ R_{3}-2 R_{1}\end{gathered}\left[\begin{array}{cccc}1 & a & -1 & 1 \\ 0 & 2 a-2 & 0 & 0 \\ 0 & 2-2 a & a & -1\end{array}\right] R_{3}+R_{2}$
$\left[\begin{array}{cccc}1 & a & -1 & 1 \\ 0 & 2 a-2 & 0 & 0 \\ 0 & 0 & a & -1\end{array}\right]$
Consider the numbers $2 a-2$ and a, we have three cases:
Case 1: $2 a-2=0$, that is, $a=1$. In this case, the matrix becomes
$\left[\begin{array}{cccc}1 & a & -1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1\end{array}\right] \quad R_{3} \longleftrightarrow R_{2}\left[\begin{array}{cccc}1 & a & -1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0\end{array}\right]$ which says that the system has infinitely many solutions.

Case 2: $a=0$, that is, $a=0$. In this case, the matrix becomes
$\left[\begin{array}{cccc}1 & a & -1 & 1 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & -1\end{array}\right]$ whose last row says that the system has no solutions.
Case 3: $2 a-2 \neq 0$ and $a \neq 0$, that is, $a \neq 1$ and $a \neq 0$. In this case, the matrix becomes
$\left[\begin{array}{cccc}1 & a & -1 & 1 \\ 0 & 2 a-2 & 0 & 0 \\ 0 & 0 & a & -1\end{array}\right] \begin{gathered}\frac{1}{2 a-2} R_{2} \\ \frac{1}{a} R_{3} R_{2}\end{gathered}\left[\begin{array}{cccc}1 & a & -1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{-1}{a}\end{array}\right]$ which says that the system has exactly one solutions.

Answer:
(i) The system has no solution when $a=0$.
(ii) The system has exactly one solution when $a \neq 1$ and $a \neq 0$.
(ii) The system has infinitely many solutions when $a=1$.
[5] 2. Solve the systems:

$$
\begin{aligned}
2 x-2 y-4 z-u+7 v & =2 \\
4 x-4 y-7 z-2 u+16 v & =7 \\
-x+y+2 z-u-4 v & =-3
\end{aligned}
$$

Solution:

3. Find a matrix A so that $\left(2 A-\left[\begin{array}{rr}-1 & 2 \\ 1 & -2\end{array}\right]\right)^{T}=\left[\begin{array}{rr}-5 & 3 \\ 2 & -2\end{array}\right]$

Solution:

Transpose both sides of the above equation, we have

$$
\begin{aligned}
& 2 A-\left[\begin{array}{rr}
-1 & 2 \\
1 & -2
\end{array}\right]=\left[\begin{array}{rr}
-5 & 2 \\
3 & -2
\end{array}\right] \text { and so, } \\
& 2 A=\left[\begin{array}{rr}
-5 & 2 \\
3 & -2
\end{array}\right]+\left[\begin{array}{rr}
-1 & 2 \\
1 & -2
\end{array}\right]=\left[\begin{array}{rr}
-6 & 4 \\
4 & -4
\end{array}\right] . \text { Thus, } \\
& A=\frac{1}{2}\left[\begin{array}{rr}
-6 & 4 \\
4 & -4
\end{array}\right]=\left[\begin{array}{rr}
-3 & 2 \\
2 & -2
\end{array}\right] .
\end{aligned}
$$

MATHEMATICS 221 L03/11 B12/13 FALL 2004
 QUIZ 1 Friday, September 24, 2004 at 11:00

1. Find conditions on the constants a and b so that the following system has (i) no solution, (ii) exactly one solution or (iii) infinitely many solutions.

$$
\begin{aligned}
-x+3 y+2 z & =-8 \\
x+z & =2 \\
3 x+3 y+a z & =b
\end{aligned}
$$

Solution:
$\left[\begin{array}{cccc}-1 & 3 & 2 & -8 \\ 1 & 0 & 1 & 2 \\ 3 & 3 & a & b\end{array}\right] R_{1}+R_{2}\left[\begin{array}{cccc}0 & 3 & 3 & -6 \\ 1 & 0 & 1 & 2 \\ 0 & 3 & a-3 & b-6\end{array}\right] R_{3}-3 R_{2}-R_{1}$
$\left[\begin{array}{cccc}0 & 3 & 3 & -6 \\ 1 & 0 & 1 & 2 \\ 0 & 0 & a-6 & b\end{array}\right]{ }^{1} R_{1}\left[\begin{array}{cccc}0 & 1 & 1 & -2 \\ 1 & 0 & 1 & 2 \\ 0 & 0 & a-6 & b\end{array}\right] R_{1} \longleftrightarrow R_{2}$
$\left[\begin{array}{cccc}1 & 0 & 1 & 2 \\ 0 & 1 & 1 & -2 \\ 0 & 0 & a-6 & b\end{array}\right]$

Consider the number $a-6$, we have two cases:
Case 1: $a-6 \neq 0$, that is, $a \neq 6$. Do $\frac{1}{a-6} R_{3}$, we get
$\left[\begin{array}{cccc}1 & 0 & 1 & 2 \\ 0 & 1 & 1 & -2 \\ 0 & 0 & 1 & \frac{b}{a-6}\end{array}\right]$ which says that the system has exactly one solution.
Case 2: $a-6=0$, that is, $a=6$. The matrix becomes: $\left[\begin{array}{cccc}1 & 0 & 1 & 2 \\ 0 & 1 & 1 & -2 \\ 0 & 0 & 0 & b\end{array}\right]$. Now, we have two subcases:

Subcase 2a: $b=0$. The matrix becomes:
$\left[\begin{array}{cccc}1 & 0 & 1 & 2 \\ 0 & 1 & 1 & -2 \\ 0 & 0 & 0 & 0\end{array}\right]$ which says that the system has infinitely many solutions.
Subcase 2b: $b \neq 0$. The last row says that the system has no solutions.

Answer:

(i) The system has no solution when $a=6$ and $b \neq 0$.
(ii) The system has exactly one solution when $a \neq 6$
(ii) The system has infinitely many solutions when $a=6$ and $b=0$.
2. Solve the systems:

$$
\left.\begin{array}{rl}
x & -z+2 u+w
\end{array}\right) 2
$$

Solution:

| $\left[\begin{array}{rrrrrr}1 & 0 & -1 & 2 & 1 & 2 \\ -2 & 1 & 2 & -1 & 0 & -7 \\ 1 & 1 & -1 & 3 & 1 & -1\end{array}\right]$ |
| :--- | | |
| :---: |
| $R_{2}+2 R_{1}$ |
| $R_{3}-R_{1}$ |\(\left[\begin{array}{rrrrrr}1 \& 0 \& -1 \& 2 \& 1 \& 2

0 \& 1 \& 0 \& 3 \& 2 \& -3

0 \& 1 \& 0 \& 1 \& 0 \& -3\end{array}\right] R_{3}-R_{2}\)

Thus

$$
\begin{array}{rlr}
x & =s+t+2 \\
y & =t-3 \\
z & =s & \\
u & =-t & \text { where } s \text { and } t \text { are any real numbers. } \\
w & =t &
\end{array}
$$

3. Find a matrix A so that $\left(A-2\left[\begin{array}{rr}-1 & 2 \\ 1 & -2\end{array}\right]\right)^{T}=\left[\begin{array}{rr}2 & 3 \\ 3 & -2\end{array}\right]$.

Solution:

Transpose both sides of the above equation, we have
$A-2\left[\begin{array}{rr}-1 & 2 \\ 1 & -2\end{array}\right]=\left[\begin{array}{rr}2 & 3 \\ 3 & -2\end{array}\right]$, and so
$A=\left[\begin{array}{rr}2 & 3 \\ 3 & -2\end{array}\right]+2\left[\begin{array}{rr}-1 & 2 \\ 1 & -2\end{array}\right]=\left[\begin{array}{rr}0 & 7 \\ 5 & -6\end{array}\right]$

