MATHEMATICS 221 L04 FALL 2003 MIDTERM EXAMINATION Thursday, November 6, 2003

I.D.#		

I agree that this paper may be placed at the front of the classroom for pick-up.

Please initial either \mathbf{YES}

NO

or

NO CALCULATORS ALLOWED ANSWER ALL QUESTIONS SHOW ALL WORK

LAST NAME_____

[5] **1**. Solve the system:

x	_	2y	_	z	+	3w	=	1
2x	—	4y	+	z			=	5
x	_	2y	+	2z	_	3w	=	4

[5] **2**. Given that det
$$\begin{bmatrix} a & b & c \\ p & q & r \\ x & y & z \end{bmatrix} = 5$$
. Find det $\begin{bmatrix} a+2x & b+2y & c+2z \\ 3x+4p & 3y+4q & 3z+4r \\ -2p & -2q & -2r \end{bmatrix}$.

[5] **3.** Let $A = \begin{bmatrix} 3 & -1 \\ -2 & 0 \end{bmatrix}$. Find an invertible matrix U so that UA = R where R is the reduced row-echelon form of A and express U as a product of elementary matrices.

	LAST NAME	_FIRST NAME
[5]	4 . Find all values of x so that the matrix	$\begin{bmatrix} 1 & x & x \\ x & 1 & x \\ x & x & 1 \end{bmatrix}$ is not invertible.

[5] 5. Prove that if $A^3 = 0$ then I - A is invertible and $(I - A)^{-1} = I + A + A^2$.

LAST NAME FIRST NAME **6.** Let $A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$. Is A diagonalizable? If A is diagonalizable, find an invertible matrix P and a diagonal matrix D so that $A = PDP^{-1}$.

[5]

(a) If $A^2 = A$ then A = 0 or A = I. (b) If $A^3 = 3I$ then A is invertible. (c) $\begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix}$ is an elementary matrix. (d) If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ then $adjA = \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$.

(e) If A is a square matrix and A is not invertible then 0 is an eigenvalue of A.

LAST NAME_____ 8. Find all complex numbers z so that $z^3 = -27i$. Express your answers in the form a + bi[5]where a and b are real numbers.