MATHEMATICS 221 L04 FALL 2003 MIDTERM EXAMINATION
Thursday, November 6, 2003


| I agree that this paper may be placed at the front of the classroom for pick-up. |  |  |  |  |
| ---: | :--- | :--- | :--- | :--- |
| Please initial either YES |  | or | NO |  |

NO CALCULATORS ALLOWED
ANSWER ALL QUESTIONS
SHOW ALL WORK

## LAST NAME

## FIRST NAME

[5] 1. Solve the system:

$$
\begin{aligned}
x-2 y-z+3 w & =1 \\
2 x-4 y+z & =5 \\
x-2 y+2 z-3 w & =4
\end{aligned}
$$

2. Given that det $\left[\begin{array}{lll}a & b & c \\ p & q & r \\ x & y & z\end{array}\right]=5$. Find det $\left[\begin{array}{ccc}a+2 x & b+2 y & c+2 z \\ 3 x+4 p & 3 y+4 q & 3 z+4 r \\ -2 p & -2 q & -2 r\end{array}\right]$.
3. Let $A=\left[\begin{array}{rr}3 & -1 \\ -2 & 0\end{array}\right]$. Find an invertible matrix $U$ so that $U A=R$ where $R$ is the reduced row-echelon form of $A$ and express $U$ as a product of elementary matrices.

LAST NAME
[5]

FIRST NAME
$\left.\begin{array}{lll}1 & x & x \\ x & 1 & x \\ x & x & 1\end{array}\right]$ is not invertible.
[5] 5. Prove that if $A^{3}=0$ then $I-A$ is invertible and $(I-A)^{-1}=I+A+A^{2}$.
[5] 6. Let $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 2\end{array}\right]$. Is $A$ diagonalizable? If $A$ is diagonalizable, find an invertible matrix $P$ and a diagonal matrix $D$ so that $A=P D P^{-1}$.
[5] 7. For each of the following statements, determine whether the statement is true ( T ) or false ( F ). No explanation is needed.
(a) If $A^{2}=A$ then $A=0$ or $A=I . \quad \square$
(b) If $A^{3}=3 I$ then $A$ is invertible. $\quad \square$
(c) $\left[\begin{array}{cc}-2 & 0 \\ 0 & 1\end{array}\right]$ is an elementary matrix. $\quad \square$
(d) If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ then $\operatorname{adj} A=\left[\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right]$. $\square$
(e) If $A$ is a square matrix and $A$ is not invertible then 0 is an eigenvalue of $A$.
[5] 8. Find all complex numbers $z$ so that $z^{3}=-27 i$. Express your answers in the form $a+b i$ where $a$ and $b$ are real numbers.

