MATH 221 (L05)
[10] 1. S olve the system:

$$
\begin{aligned}
& x \quad-z+2 u+w=2 \\
& -2 x+y+2 z-u \quad=-7 \\
& x+y-z+3 u+w=-1
\end{aligned}
$$

2. L et $A=\left[\begin{array}{lll}1 & x & x \\ x & 1 & x \\ x & x & 1\end{array}\right]$.
(a) Find all values of x so that A is not invertible.
(b) Is it true that if A is not invertible then the system $A X=0$ has no solutions? Explain.
3. L et A be a square matrix. Prove the following statements:
(a) If A is not invertible then 0 is an eigenvalue of A.
(b) If A is diagonalizable then A^{T} is also diagonalizable.
[10] 7. F or the following, express your answers in the form $a+b i$ where a and b are real numbers.
(a) Compute $(1-\sqrt{3} i)^{10}$.
(b) Find all complex numbers z so that $z^{4}=-16$.
4. Co nsider the points $A(2,1,-2), B(4,1,0)$ and $C(6,3,0)$.
(a) Find the internal angles of the triangle with vertices A, B and C.
(b) Find an equation of the plane containing the points A, B and C.
[10]
5. L et $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$.
(a) Find an invertible matrix U such that $U A=B$.
(b) Express U^{-1} as a product of elementary matrices.
6. L et $A=\left[\begin{array}{ll}3 & -4 \\ 1 & -2\end{array}\right]$.
(a) Find an invertible matrix P and a diagonal matrix D so that $P^{-1} A P=D$.
(b) Compute A^{7}.
7. Let $A^{-1}=\left[\begin{array}{rrr}2 & 1 & 2 \\ -3 & -1 & -1 \\ 5 & 2 & 1\end{array}\right]$.
(a) Find $\operatorname{det} A$.
(b) Find $\operatorname{det}\left(A^{-1}+2 a d j A\right)$.
8. L et P_{1} be the plane with equation $x+2 y-z=2$ and P_{2} be the plane with equation $2 x-y+z=2$. Let L be the line of intersection of the planes P_{1} and P_{2}.
(a) Is the point $A(1,1,1)$ on both of the planes P_{1} and P_{2} ? Explain.
(b) Find an equation of the line L.
(c) Find the shortest distance between the point $B(4,-3,-3)$ and the line L, also find the point Q on the line L that is closest to B.
[10] 10. L et $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation such that $T\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $T\left[\begin{array}{l}3 \\ 2\end{array}\right]=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
(a) Find the matrix of T; that is, find a matrix A so that $T \vec{v}=A \vec{v}$ for all $\vec{v} \in \mathbb{R}^{2}$.
(b) Is T invertible? If T is invertible, find the matrix of T^{-1}.
(c) Is there a vector $\vec{a} \in \mathbb{R}^{2}$ so that $T \vec{a}=\left[\begin{array}{c}-3 \\ 7\end{array}\right]$? If so, find \vec{a}.
