MATH 221 PRACTICE PROBLEMS

By W. Keith Nicholson

Copyright 2004

1. Find A if: (a) $2 A-\left[\begin{array}{ll}1 & -3\end{array}\right]=\left(\left[\begin{array}{l}6 \\ 5\end{array}\right]-3 A^{T}\right)^{T}$;
(b) $2 A^{T}+\left[\begin{array}{cc}2 & -1 \\ 3 & 0\end{array}\right]=\left(\left[\begin{array}{cc}5 & 1 \\ -1 & 6\end{array}\right]-3 A\right)^{T}$
2. Find A in terms of B if: (a) $(2 A-B)^{T}=A^{T}+(3 B)^{T}$; (b) $\left(B^{T}-3 A\right)^{T}=5 A^{T}+6 B$
3. Show that every 1×3 matrix A can be written in the form

$$
A=a\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]+b\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]+c\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]
$$

for some scalars a, b and c. What can you say about 3×1 matrices?
4. If $A=-A$ where A is an $m \times n$ matrix, show that $A=0$.
5. If A is a symmetric matrix, show that $c A$ is also symmetric for any scalar c.
6. Show that $(-A)^{T}=-A^{T}$ for any matrix A.
7. If A and B are symmetric, show that $A-B$ is also symmetric.
8. A square matrix A is called skew-symmetric if $A^{T}=-A$.
(a) Show that every 2×2 skew-symmetric matrix has the form $\left[\begin{array}{cc}0 & b \\ -b & 0\end{array}\right]$ for some scalar b.
(b) If A and B are skew-symmetric, show that $A+B$ and $c A$ are skew-symmetric for any scalar c.
9. Show that any square matrix A can be written in the form $A=S+W$ where S is symmetric and W is skew-symmetric. [Hint: First verify the identity $A=\frac{1}{2}\left(A+A^{T}\right)+\frac{1}{2}\left(A-A^{T}\right)$.]
10. In each case find the solution of the system whose augmented matrix has been carried to the following matrix R by row operations.
(a) $R=\left[\begin{array}{ccccccc}1 & 2 & 0 & 3 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
(b) $R=\left[\begin{array}{ccccccc}1 & 0 & 7 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -3 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]$
11. In each case find the rank of the given matrix, possibly in terms of the parameter a.
(a) $\left[\begin{array}{cccc}1 & -1 & 3 & 5 \\ 3 & -2 & 1 & -2 \\ -1 & 1 & 1 & -1\end{array}\right]$
(b) $\left[\begin{array}{cccc}1 & -4 & -5 & 2 \\ 1 & 6 & 3 & 4 \\ 1 & 1 & -1 & 3\end{array}\right]$
(c) $\left[\begin{array}{cccc}-1 & 3 & -2 & -2 \\ 3 & 1 & 1 & 9 \\ 1 & 7 & -3 & a\end{array}\right]$
(d) $\left[\begin{array}{cccc}1 & -2 & -5 & 3 \\ 2 & -3 & -8 & 7 \\ -2 & 4 & a+9 & a-7\end{array}\right]$
12. If a system of 5 equations in 7 variables has a solution, explain why there is more than one solution.
13. Suppose a system of 4 equations in 4 variables has a leading 1 in each row of the row-echelon form of its augmented matrix. Must there be a unique solution? Explain.
14. The graph of a linear equation $a x+b y+c z=d$ is a plane in space. By examining the possible positions of three planes in space, explain geometrically why 3 equations in 3 variables must have zero, one or infinitely many solutions.
15. If A is carried to B by a row operation, show that B can be carried back to A by another row operation, and describe the new operation in terms of the original one.
16. Find a sequence of row operations carrying $\left[\begin{array}{lll}b_{1}+c_{1} & b_{2}+c_{2} & b_{3}+c_{3} \\ c_{1}+a_{1} & c_{2}+a_{2} & c_{3}+a_{3} \\ a_{1}+b_{1} & a_{2}+b_{2} & a_{3}+b_{3}\end{array}\right] \rightarrow\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]$
17. The graph of the equation $x^{2}+y^{2}+a x+b y+c=0$ is a circle for any choice of the numbers a, b and c. Find the circle through the three points $(1,2),(3,-1)$ and $(0,-1)$.
18. Find the quadratic equation $f(x)=a+b x+c x^{2}$ which passes through the points $(0,1),(1,2)$ and $(2,9)$. [This is called the interpolating polynomial for the three data points. It is used to find data points between given ones, and in plotting curves on computer monitors.]
19. In each case find all values of a for which the system has nontrivial solutions, and determine all solutions in each case.
(a) $x_{1}-2 x_{2}+x_{3}=0$
(b) $x_{1}+2 x_{2}+x_{3}=0$
$x_{1}+a x_{2}-3 x_{3}=0$
$x_{1}+3 x_{2}+6 x_{3}=0$
$-x_{1}+6 x_{2}-5 x_{3}=0$
$2 x_{1}+3 x_{2}+a x_{3}=0$
(c) $\begin{aligned} x_{1}+x_{2}-x_{3} & =0 \\ a x_{2} & -2 x_{3}=0 \\ x_{1}+x_{2}+a x_{3} & =0\end{aligned}$
(d) $a x_{1}+x_{2}+x_{3}=0$
$x_{1}+x_{2}-x_{3}=0$
$x_{1}+x_{2}+a x_{3}=0$
20. Consider the matrices $A=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right], B=\left[\begin{array}{l}0 \\ 3 \\ 1\end{array}\right]$, and $C=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$.
(a) Show that the only choice of numbers x, y and z such that $x A+y B+z C=0$ is $x=y=$ $z=0$. Because of this we say that the set $\{A, B, C\}$ of matrices is linearly independent.
(b) Is the set $\left\{\left[\begin{array}{c}1 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ linearly independent? Support your answer.
21. Show algebraically that there is a line through any two points in the plane. [Hint: Use the fact that every line has equation $a x+b y+c=0$ where a, b and c are not all zero.]
22. Every plane in space has equation $a x+b y+c z+d=0$ where a, b and c are not all zero. Show algebraically that there is a plane through any three points in space. [Hint: Preceding exercise.]
23. Find all solutions to the following system: $x+y+2 z=2$

$$
\begin{aligned}
2 x+y-z & =3 \\
x+2 y+7 z & =3
\end{aligned}
$$

24. Find the augmented matrix, in reduced row-echelon form, of a system of equations in the variables x, y and z which has the following solutions: $x=1-2 t, y=-3+t$ and $z=t$.
25. Find all solutions to the following system: $x+2 y+z=-1$

$$
3 x+5 y+z=2
$$

$$
-x-y+3 z=-5
$$

26. Find all solutions to the following system: $x_{1}-x_{2}+2 x_{4}+x_{5}=2$

$$
\begin{aligned}
-2 x_{1} & +2 x_{2}+x_{3}-4 x_{4} \\
x_{1} & -x_{2}+x_{3}+3 x_{4}+x_{5}
\end{aligned}=-1
$$

27. Find (if possible) conditions on the numbers a, b and c so that the following set of linear equations has no solution, a unique solution, or infinitely many solutions.

$$
\begin{gathered}
x-y+2 z=a \\
2 x-y+3 z=b \\
-x+2 y-3 z=c
\end{gathered}
$$

28. Find conditions on a such that the system

$$
\begin{gathered}
x-y+2 z=a \\
2 x+y-z=3 \\
x+5 y-8 z=1
\end{gathered}
$$

has zero, one or infinitely many solutions.
29. Either prove the following statement or give an example showing that it it false: If there is more than one solution to a system of linear equations, the augmented matrix A of the system has a row of zeros.
30. Find all solutions to the system: $x_{1}-x_{2}+2 x_{3}+2 x_{4}+3 x_{5}=-4$

$$
-2 x_{1}+3 x_{2}-6 x_{3}-3 x_{4}-11 x_{5}=11
$$

$$
\begin{aligned}
-x_{1}+2 x_{2}-4 x_{3}+x_{4}-8 x_{5} & =7 \\
x_{0} & -2 x_{2}+3 x_{1}-5 x_{5}=3
\end{aligned}
$$

31. Find the augmented matrix, in reduced row-echelon form, of a system of three equations in five variables $x_{1}, x_{2}, x_{3}, x_{4}$, and x_{5}, with solutions $x_{1}=2 t-s-2, x_{2}=3, x_{3}=s, x_{4}=6-t$, and $x_{5}=t$.
32. Simplify the following expressions where A, B and C represent matrices.
(a) $A(3 B-C)+(A-2 B) C+2 B(C+2 A)$
(b) $A(B+C-D)+B(C-A+D)-(A+B) C+(A-B) D$
(c) $A B(B C-C B)+(C A-A B) B C+C A(A-B) C$
(d) $(A-B)(C-A)+(C-B)(A-C)+(C-A)^{2}$
33. If A is a real symmetric 2×2 matrix and $A^{2}=0$, show that $A=0$. Give an example to show that it is essential that A is symmetric.
34. If $A=\left[\begin{array}{ccc}a & b & c \\ a_{1} & b_{1} & c_{1}\end{array}\right]$ and $A A^{T}=0$, show that $A=0$. [Remark: More generally, if A is any matrix such that $A A^{T}=0$, then necessarily $A=0$.]
35. If A is any matrix, show that $A A^{T}$ is a symmetric matrix.
36. If A and B are matrices that both commute with a matrix C, show that the matrix $2 A-3 B$ also commutes with C.
37. Find the matrix A if $\left[A^{T}-3\left[\begin{array}{cc}1 & 0 \\ 2 & -1\end{array}\right]\right]^{-1}=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$.
38. Find the matrix A if $[A-2 I]^{-1}=A^{-1}\left[\begin{array}{cc}0 & 1 \\ -1 & 3\end{array}\right]$.
39. If A is a square matrix and $A X=0$ for some matrix $X \neq 0$, show that A has no inverse.
40. If $U=\left[\begin{array}{cc}3 & -4 \\ 7 & 5\end{array}\right]$ and $A U=0$ for some matrix A, show that necessarily $A=0$.
41. If A and B are $n \times n$ matrices such that $A B$ and B are both invertible, show that A is also invertible using only Theorem $3 \S 1.5$.
42. If A and B are $n \times n$ matrices and $A B=c I$ where $c \neq 0$, show that $B A=c I$. Is it true if $c=0$?
43. Let A be a square matrix which satisfies $A^{3}-2 A^{2}+5 A+6 I=0$. Show that A is invertible, and find a formula for A^{-1} in terms of A.
44. If $E^{2}=E$ and $A=I-2 E$, show that $A^{-1}=A$.
45. Find the inverse of $\left[\begin{array}{ccc}1 & -1 & -1 \\ 2 & -1 & -4 \\ 1 & -2 & 2\end{array}\right]$.
46. If the first row of a square matrix A consists of zeros, show that A does not have an inverse.
47. If A is an invertible $n \times n$ matrix, show that $A X=B$ has a unique solution for any $n \times k$ matrix B.
48. If $\operatorname{det}\left[\begin{array}{ccc}a & b & c \\ p & q & r \\ x & y & z\end{array}\right]=5$, find $\operatorname{det}\left[\begin{array}{ccc}a+2 x & b+2 y & c+2 z \\ x+p & y+q & z+r \\ 3 p & 3 q & 3 r\end{array}\right]$.
49. Find the values of the number c such that $\left[\begin{array}{lll}1 & c & 0 \\ 2 & 0 & c \\ c & -1 & 1\end{array}\right]$ has an inverse.

50. Assume that $\operatorname{det}(A)=3$ where $A=\left[\begin{array}{lll}a & b & c \\ p & q & r \\ x & y & z\end{array}\right]$. Compute $\operatorname{det}\left(-2 B^{-1}\right)$ where $B=\left[\begin{array}{ccc}2 x & a+2 p & p-3 x \\ 2 y & b+2 q & q-3 y \\ 2 z & c+2 r & r-3 z\end{array}\right]$.
51. Show that there is no real 3×3 matrix A such that $A^{2}=-I$.
52. Show that $\operatorname{det}\left[\begin{array}{lll}p+x & q+y & r+z \\ a+x & b+y & c+z \\ a+p & b+q & c+r\end{array}\right]=2 \operatorname{det}\left[\begin{array}{lll}a & b & c \\ p & q & r \\ x & y & z\end{array}\right]$.
53. Show that $\operatorname{det}\left[\begin{array}{cccc}1 & a & p & q \\ x & 1 & b & r \\ x^{2} & x & 1 & c \\ x^{3} & x^{2} & x & 1\end{array}\right]=(1-a x)(1-b x)(1-c x)$ for any choice of p, q and r. [Hint: Begin by eliminating x from column 1.]
54. In each case evaluate $\operatorname{det} A$ by inspection.
(a) $A=\left[\begin{array}{lll}a & 3-a & a+1 \\ b & 3-b & b+1 \\ c & 3-c & c+1\end{array}\right]$
(b) $A=\left[\begin{array}{ccc}a & b & c \\ a+b & 2 b & c+b \\ 3 & 3 & 3\end{array}\right]$
55. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $B=\left[\begin{array}{ll}a+c & 2 c \\ b+d & 2 d\end{array}\right]$. If $\operatorname{det} A=2$, find $\operatorname{det}\left(A^{2} B^{T} A^{-1}\right)$.
56. Evaluate $\operatorname{det}\left[\begin{array}{ccc}x-1 & 2 & 3 \\ 2 & -3 & x-2 \\ -2 & x & -2\end{array}\right]$ by first adding all other rows to the first row. Then find all values of x such that the determinant is zero.
57. If A is a 4×4 matrix and $A^{2}=3 A$, what are the possible values of $\operatorname{det}(A)$?
58. If $\operatorname{det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=-3$, compute $\operatorname{det}\left[\begin{array}{ccc}3 & -3 & 0 \\ c+5 & -5 & 3 a \\ d-2 & 2 & 3 b\end{array}\right]$.
59. If A and B are $n \times n$ where n is odd, and if $A B=-B A$, show that either A or B has no inverse.
60. If A is 4×4 and $\operatorname{det} A=2$, find $\operatorname{det}\left(15 A^{-1}-6 a d j A\right)$.
61. In each case: (1) Find the values of the number c such that A has an inverse, and (2) Find A^{-1} for those values of c.
(a) $A=\left[\begin{array}{ccc}c & c & 1 \\ 1 & c & 1 \\ c & -1 & 2\end{array}\right]$
(b) $A=\left[\begin{array}{lll}4 & c & 3 \\ c & 2 & c \\ 5 & c & 4\end{array}\right]$
62. If $\operatorname{det} A=3, \operatorname{det} B=-1$ and $\operatorname{det} C=2$, compute the determinant of:
(a) $\left[\begin{array}{lll}A & X & Y \\ 0 & B & Z \\ 0 & 0 & C\end{array}\right]$
(b) $\left[\begin{array}{lll}A & X & 0 \\ 0 & B & 0 \\ Y & Z & C\end{array}\right]$
63. If A is 2×2 and B is 3×3, show that $\operatorname{det}\left[\begin{array}{cc}0 & B \\ A & X\end{array}\right]=\operatorname{det} A \operatorname{det} B$. [Hint: First left multiply by $\left.\left[\begin{array}{cc}0 & I_{2} \\ I_{3} & 0\end{array}\right].\right]$
64. Consider the matrix $A=\left[\begin{array}{cc}0 & 2 \\ 2 & -3\end{array}\right]$. Find the characteristic polynomial, eigenvalues and eigenvectors for A, and find an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=D$.
65. Consider the matrix $A=\left[\begin{array}{cc}-2 & 1 \\ 4 & 1\end{array}\right]$. Find the characteristic polynomial, eigenvalues and eigenvectors for A, and find an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=D$.
66. Show that $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right]$ is not diagonalizable.
67. If $A^{k}=0$ for some $k \geq 1$, show that 0 is the only eigenvalue of A.
68. If A is a diagonalizable $n \times n$ matrix and every eigenvalue of A is zero, show that $A=0$.
69. If $A^{2}=A$, show that 0 and 1 are the only eigenvalues of A.
70. If A is a diagonalizable matrix, and if every eigenvalue λ of A satisfies $\lambda^{2}=\lambda$, show that $A^{2}=A$.
71. If A is a diagonalizable $n \times n$ matrix, show that A^{2} is also diagonalizable.
72. If A is a diagonalizable $n \times n$ matrix, show that A^{T} is also diagonalizable.
73. Determine whether $A=\left[\begin{array}{ccc}2 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 2\end{array}\right]$ is diagonalizable.
74. Show that $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 2 & 0 & 0\end{array}\right]$ is not diagonalizable.
75. If A is diagonalizable and $\lambda_{i} \geq 0$ for each eigenvalue λ_{i}, show that $A=B^{2}$ for some matrix B. [Hint: If $P^{-1} A P=D=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$, take $B=P D_{0} P^{-1}$ where $D_{0}=$ $\left.\operatorname{diag}\left(\sqrt{\lambda_{1}}, \cdots, \sqrt{\lambda_{n}}\right).\right]$
76. If A is diagonalizable and has only one eigenvalue λ, show that $A=\lambda I$.
77. If A is diagonalizable with eigenvalues $\lambda_{1}, \lambda_{2}, \cdots \lambda_{n}$ (possibly not all distinct), show that $\operatorname{det} A=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$. [Remark: This holds for any square matrix, diagonalizable or not.]
78. Find A^{-1} if $A=\left[\begin{array}{cc}1 & i \\ -i & 1+i\end{array}\right]$.
79. Find a quadratic equation with real coefficients that has $2-3 i$ as a root. What is the other root?
80. Show that $w=3-2 i$ is a root of $x^{2}-6 x+13$. What is the other root? Justify your answer.
81. Show that $z=(1+i)^{n}+(1-i)^{n}$ is a real number for each $n \geq 1$ by first finding the conjugate \bar{z}.
82. If $z \neq 0$ is a complex number, show that $1 / z=\frac{1}{|z|^{z}} \bar{z}$.
83. If $z w$ is real and $z \neq 0$, show that $w=r \bar{z}$ for some real number r.
84. Show that $|z+w|^{2}+|z-w|^{2}=2\left(|z|^{2}+|w|^{2}\right)$ for all complex numbers z and w. [Hint: $|z|^{2}=$ $z \bar{z}$.]
85. Find the point $\frac{1}{5}$ the way from $P(2,-1,5)$ to $Q(3,0,4)$.
86. Find the two trisection points between $P(1,2,3)$ and $Q(8,-2,0)$.
87. Let A, B and C denote the vertices of a triangle. If E is the midpoint of side $B C$, show that $\overrightarrow{A E}=\frac{1}{2}(\overrightarrow{A B}+\overrightarrow{A C})$. [Hint: Start by writing $\overrightarrow{A E}=\overrightarrow{A B}+\overrightarrow{B E}$.]
88. The unit cube has three of its vertices $O(0,0,0), A(1,0,0), B(0,1,0)$ and $C(0,0,1)$. Show that, of the four diagonals of the unit cube, no two are perpendicular.
89. In each case write the vector \vec{v} as a sum $\vec{v}=\vec{v}_{1}+\vec{v}_{2}$ where \vec{v}_{1} is parallel to \vec{d} and \vec{v}_{2} is orthogonal to \vec{d}. (a) $\vec{v}=\left[\begin{array}{lll}3 & -1 & 2\end{array}\right]^{T}$ and $\vec{d}=\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]^{T}$. (b) $\vec{v}=\left[\begin{array}{lll}5 & 1 & -2\end{array}\right]^{T}$ and $\vec{d}=\left[\begin{array}{lll}3 & 0 & -7\end{array}\right]^{T}$.
90. If $\|\vec{v}\|^{2}+\|\vec{w}\|^{2}=\|\vec{v}+\vec{w}\|^{2}$ where $\vec{v} \neq \overrightarrow{0}$ and $\vec{w} \neq \overrightarrow{0}$, show that \vec{v} and \vec{w} are orthogonal.
91. Find the scalar equations of the line through the point $P(3,-1,2)$ which is parallel to the line $[x y z]^{T}=[2-5 t 32 t]^{T} \quad$ where t is arbitrary.
92. Find the scalar equations of the line through the points $P_{1}(1,0,-2)$ and $P_{2}(2,1,-1)$.
93. Find the point of intersection of the line $\left[\begin{array}{lll}x & y & z\end{array}\right]^{T}=\left[\begin{array}{lll}2 & -1 & 3\end{array}\right]^{T}+t\left[\begin{array}{lll}1 & -1 & -4\end{array}\right]^{T}$ and the plane $3 x+y-2 z=4$.
94. Find the equation of the plane through the point $P(1,1,-2)$ which contains the line $\left[\begin{array}{lll}x & y & z\end{array}\right]^{T}=\left[\begin{array}{lll}3 & -1 & 0\end{array}\right]^{T}+t\left[\begin{array}{lll}1 & 1 & -1\end{array}\right]^{T}$.
95. Determine the equation of the line through the point $P(1,-1,0)$ which is perpendicular to the plane $x+y-2 z=3$.
96. Find the equation of the plane through the point $P_{0}(2,3,-1)$ which is parallel to the plane with equation $4 x-3 y+z=4$.
97. Find the point Q on the line with equation $\left[\begin{array}{lll}x & y & z\end{array}\right]^{T}=\left[\begin{array}{lll}1 & 2 & 0\end{array}\right]^{T}+t\left[\begin{array}{lll}2 & -1 & 1\end{array}\right]^{T}$ which is closest to the point $P(0,1,2)$.
98. Find the shortest distance from the point $P(1,0,2)$ to the plane $5 x-7 y+2 z=3$.
99. Find the shortest distance from the point $P(1,0,2)$ to the line $\left[\begin{array}{lll}x & y & z\end{array}\right]^{T}=\left[\begin{array}{lll}1 & -1 & 0\end{array}\right]^{T}+t\left[\begin{array}{lll}2 & 1 & 1\end{array}\right]^{T}$.
100. Consider the the plane through the point $P_{\circ}(1,-1,0)$ which is parallel to the plane with equation $2 x-3 y+2 z=4$. Does this plane pass through the origin? Support your answer.
101. Consider the points $A(2,2,1), B(1,1,0)$ and $C(2,3,-3)$.
(a) Are these points the vertices of a right-angled triangle? Justify your answer.
(b) Find the cosine of the interior angle of the triangle at vertex C.
102. Find the area of the triangle with vertices $A(1,0,0), B(0,1,0)$ and $C(0,0,1)$.
103. Consider the transformation T defined as follows:

Rotation through $\pi / 2$ followed by reflection in the line $y=x$.
Determine the effect of T, that is determine if it is a rotation (and find the angle) or a reflection or projection in some line through the origin (and find the line).
105. Find the reflection of the point $\left[\begin{array}{c}2 \\ -3\end{array}\right]$ in the line $y=-3 x$.
106. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation with $T\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}5 \\ 7\end{array}\right]$ and $T\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{c}3 \\ -2\end{array}\right]$.
(a) Find the matrix of T and give a formula for $T\left[\begin{array}{l}x \\ y\end{array}\right]$.
(b) Compute $T^{-1}\left[\begin{array}{l}2 \\ 2\end{array}\right]$.

