FINAL Handout
 MATH 249

1. Evaluate the limits:
(a) $\lim _{x \rightarrow \pi} \frac{\cos \left(\frac{x}{2}\right)}{\pi-x}$
(b) $\lim _{x \rightarrow-\infty} \frac{\cos \left(\frac{x}{2}\right)}{\pi-x}$
(c) $\lim _{x \rightarrow+\infty}\left(x 2^{-x^{2}}\right)$
(d) $\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{4 x^{2}+3 x+7}}$
2. Find the domain and the derivative of f of
(a) (a) $\quad f(x)=\frac{x}{3} e^{-\sin \left(\frac{3}{x}\right)}$
(b) $\quad f(x)=\frac{\ln (2 x-3)}{e^{-x^{2}}}$
3. A Sketch the graph of $y=e^{2 x}\left(6 x^{2}-2 x-1\right)$ i.e.
(a) find the domain, range, vertical and horizontal asymptotes, x and y intercepts;
(b) find the intervals where f is increasing or decreasing;local extrema;
(c) find the intervals where f is concave down or up

B

Sketch the graph of $y=x(4-x)^{3}$.Indicate where the function is increasing,decreasing, concave up,concave down;find the domain and range.
4. (a) Find the tangent approximation (linearization) of $f(x)=\frac{1}{\sqrt{2 x^{2}+1}}$ around $x_{0}=2$.
(b) Use it to estimate $\frac{1}{\sqrt{3}}$.
5. A Sketch a graph of one function f satisfying all the following conditions:
(a) f is defined on $]-\infty,+\infty[$, continuous there except
(b) f is discontinuous at $x=2,4$ where $\lim _{x \rightarrow 4^{-}} f(x)=f(4)=0, \quad x=2$ is a vertical asymptote.
(c) $y=3$ is a horizontal asymptote and $\lim _{x \rightarrow-\infty} f(x)$ does not exist,
(d) f is increasing on $] 3,4[$ and on $] 4,+\infty[, f$ is decreasing on $] 0,2[$ and on $] 2,3[$, and $f^{\prime}(x)=0$ for all $\left.x \in\right]-2,0[$;
(e) f is concave up on $] 0,1[$ and on $] 3,4[$; f is concave down on $] 1,2[$, on $] 2,3[$ and on $] 4,+\infty[$;
(f) absolute maximum value is 6 , and local minimum value is -2 .

B Sketch a graph of one function f satisfying all the following conditions:
(a) f is defined on $] 0, \infty[$
(b) f is discontinuous at $x=1,2,3$ where $\lim _{x \rightarrow 2} f(x)=3, \lim _{x \rightarrow 3} f(x)$, DNE (does not exist).
(c) $x=1$ is V.A., $y=2$ is H.A.
(d) f is increasing on the intervals $] 2,3[] 3,4[] 5, \infty[$ f is decreasing on $] 0,1[$ and on $] 4,5[$ $f^{\prime}(x)=0$ for all $x \in(] 1,2[$
(e) f is concave up on the intervals $] 2,3$ [and $] 4,6[$, concave down on $] 3,4[$ and on $] 6, \infty[$
(f) absolute maximum value is 5 , local minimum value is -1 .

C Sketch a graph of one function f satisfying all the following conditions:
(a) f is defined on $[-1,+\infty[$ continuous there except
(b) f is discontinuous at $x=1,3$ where $\lim _{x \rightarrow 1} f(x) \underline{\text { does not exist,. }}$
(c) $x=3$ is a vertical asymptote, and $y=2$ is a horizontal asymptote,
(d) f is increasing on $]-1,0[$ and on $] 3,+\infty[, f$ is decreasing on $] 0,1[$ and on $] 2,3[$, and $f^{\prime}(x)=0$ for all $\left.x \in\right] 1,2[$;
(e) f is concave up on $]-1,0[$,on $] 0,1[$ and on $] 3,4[, f$ is concave down on $] 2,3[$ and on $] 4,+\infty[$;
(f) absolute maximum value is 7 , and local minimum value is 0 .

6. A

A box with a square base(bottom) and NO top(lid) has a volume of $9 \mathrm{~m}^{3}$.Find the dimensions of the most economical box
if the material for the base costs $\$ 2$ per m^{2} and the material for the sides $\$ 3 \mathrm{per} \mathrm{m}^{2}$.
B
A landscape architect plans to enclose a $280 \mathrm{~m}^{2}$ rectangular region in a botanical garden.
She will use shrubs costing $\$ 25.00$ per meter along three sides and fencing costing $\$ 10.00$ per meter along the fourth side.
Find the dimensions of the region to minimize the total cost.
7. Find
(a) $\int \frac{3 \sqrt{x}-5}{x \sqrt{x}} d x$
(b) $\quad \int 2 x^{3} \sqrt{2 x^{2}+3} d x$
(c) $\quad \int \sin \frac{x}{3} d x$
in the domain of definition.
8. Evaluate
(a) $\int_{2}^{3} x 2^{x^{2}} d x$
(b) $\quad \int_{0}^{1} \frac{4 x+3}{3-2 x} d x$
(c) $\quad \int_{e}^{e^{2}} \frac{1}{x \ln x} d x$

