FINAL Handout MATH 249

1. Evaluate the limits:

(a)
$$\lim_{x \to \pi} \frac{\cos\left(\frac{x}{2}\right)}{\pi - x}$$
 (b)
$$\lim_{x \to -\infty} \frac{\cos\left(\frac{x}{2}\right)}{\pi - x}$$

(c)
$$\lim_{x \to +\infty} \left(x2^{-x^2}\right)$$
 (d)
$$\lim_{x \to -\infty} \frac{x}{\sqrt{4x^2 + 3x + 7}}$$

2. Find the domain and the derivative of f of

(a) (a)
$$f(x) = \frac{x}{3}e^{-\sin\left(\frac{3}{x}\right)}$$
 (b) $f(x) = \frac{\ln(2x-3)}{e^{-x^2}}$

3. **A** Sketch the graph of $y = e^{2x}(6x^2 - 2x - 1)$ i.e.

- (a) find the domain, range, vertical and horizontal asymptotes, x and y intercepts;
- (b) find the intervals where f is increasing or decreasing; local extrema;
- (c) find the intervals where f is concave down or up

\mathbf{B}

Sketch the graph of $y = x(4-x)^3$. Indicate where the function is increasing, decreasing, concave up, concave down; find the domain and range.

- 4. (a) Find the tangent approximation (linearization) of $f(x) = \frac{1}{\sqrt{2x^2+1}}$ around $x_0 = 2$.
 - (b) Use it to estimate $\frac{1}{\sqrt{3}}$.
- 5. A Sketch a graph of <u>one</u> function f satisfying all the following conditions:
 - (a) f is defined on $]-\infty, +\infty[$, continuous there except
 - (b) f is discontinuous at x = 2, 4 where $\lim_{x \to 4^-} f(x) = f(4) = 0$, x = 2 is a vertical asymptote.
 - (c) y = 3 is a horizontal asymptote and $\lim_{x \to -\infty} f(x)$ does not exist,
 - (d) f is increasing on]3, 4[and on]4, $+\infty$ [, f is decreasing on]0, 2[and on]2, 3[, and f'(x) = 0 for all $x \in]-2, 0[$;
 - (e) f is concave up on]0,1[and on]3,4[; f is concave down on]1,2[, on]2,3[and on]4, + ∞ [;
 - (f) absolute maximum value is 6, and local minimum value is -2.
 - **B** Sketch a graph of <u>one</u> function f satisfying all the following conditions:
 - (a) f is defined on $]0,\infty[$

- (b) f is discontinuous at x = 1, 2, 3 where $\lim_{x \to 2} f(x) = 3$, $\lim_{x \to 3} f(x)$, DNE (does not exist).
- (c) x = 1 is V.A., y = 2 is H.A.
- (d) f is increasing on the intervals $]2, 3[]3, 4[]5, \infty[$ f is decreasing on]0, 1[and on]4, 5[f'(x) = 0 for all $x \in (]1, 2[$
- (e) f is concave up on the intervals]2,3[and]4,6[, concave down on]3,4[and on]6, $\infty[$
- (f) absolute maximum value is 5, local minimum value is -1.
- \mathbf{C} Sketch a graph of <u>one</u> function f satisfying all the following conditions:
- (a) f is defined on $[-1, +\infty)$ continuous there except
- (b) f is discontinuous at x = 1, 3 where $\lim_{x \to 1} f(x)$ does not exist,.
- (c) x = 3 is a vertical asymptote, and y = 2 is a horizontal asymptote,
- (d) f is increasing on]-1, 0[and on $]3, +\infty[$, f is decreasing on]0, 1[and on]2, 3[, and f'(x) = 0 for all $x \in]1, 2[$;
- (e) f is concave up on]-1, 0[, on]0, 1[and on]3, 4[, f is concave down on]2, 3[and on $]4, +\infty[$;
- (f) absolute maximum value is 7, and local minimum value is 0.

6. **A**

A box with a square base (bottom) and NO top(lid) has a volume of 9 m³. Find the dimensions of the most economical box

if the material for the base costs $2 \text{ per } m^2$ and the material for the sides $3 \text{ per } m^2$.

 \mathbf{B}

A landscape architect plans to enclose a 280 m^2 rectangular region in a botanical garden.

She will use shrubs costing \$25.00 per meter along three sides and fencing

costing \$10.00 per meter along the fourth side.

Find the dimensions of the region to minimize the total cost.

7. Find

(a)
$$\int \frac{3\sqrt{x}-5}{x\sqrt{x}} dx$$
 (b) $\int 2x^3\sqrt{2x^2+3} dx$ (c) $\int \sin\frac{x}{3} dx$

in the domain of definition.

8. Evaluate

(a)
$$\int_{2}^{3} x 2^{x^{2}} dx$$
 (b) $\int_{0}^{1} \frac{4x+3}{3-2x} dx$ (c) $\int_{e}^{e^{2}} \frac{1}{x \ln x} dx$