THE UNIVERSITY OF CALGARY
 DEPARTMENT OF MATHEMATICS AND STATISTICS
 FINAL Handout
 MATH 249

1. Evaluate the limits:
(a) $\lim _{x \rightarrow \pi} \frac{\cos \left(\frac{x}{2}\right)}{\pi-x}$

Since $\cos \left(\frac{\pi}{2}\right)=0$ the type is $" \frac{0}{0}$ " so we can use L'Hopital Rule $\lim _{x \rightarrow \pi} \frac{\cos \left(\frac{x}{2}\right)}{\pi-x}=\lim _{x \rightarrow \pi} \frac{-\sin \left(\frac{x}{2}\right) \cdot \frac{1}{2}}{-1}=\frac{1}{2} \quad\left(\sin \frac{\pi}{2}=1\right)$.
(b) $\lim _{x \rightarrow-\infty} \frac{\cos \left(\frac{x}{2}\right)}{\pi-x}$

The type is " $\frac{\text { DNE }}{\infty}$ " but $-1 \leq \cos \frac{x}{2} \leq 1$ and $\pi-x>0$ so $\frac{-1}{\pi-x} \leq \frac{\cos \frac{x}{2}}{\pi-x} \leq \frac{1}{\pi-x}$
Since both $\lim _{x \rightarrow-\infty} \frac{ \pm 1}{\pi-x}=0$ by Squeeze Theorem $\lim _{x \rightarrow-\infty} \frac{\cos \left(\frac{x}{2}\right)}{\pi-x}=0$.
(c) $\lim _{x \rightarrow+\infty}\left(x 2^{-x^{2}}\right)$

Change it to a quotient $\lim _{x \rightarrow+\infty}\left(x 2^{-x^{2}}\right)=\lim _{x \rightarrow+\infty} \frac{x}{2^{x^{2}}}=" \frac{\infty}{\infty} " \lim _{x \rightarrow+\infty} \frac{1}{2^{x^{2} \cdot \ln 2 \cdot 2 x}}=$ $" \frac{1}{\infty} "=0$ (by L'Hop.Rule)
(d) $\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{4 x^{2}+3 x+7}}$

The type is $" \frac{-\infty}{\infty}$ " but it is not good for L'Hop.Rule
since $\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{4 x^{2}+3 x+7}}=\lim _{x \rightarrow-\infty} \frac{1}{\frac{1}{2}\left(4 x^{2}+3 x+7\right)^{-\frac{1}{2}}(8 x+3)}=$
$=\lim _{x \rightarrow-\infty} \frac{2 \sqrt{4 x^{2}+3 x+7}}{8 x+3}$ which is practically the same limit as before.
It is better to divide both top and botttom by the highest power in the denominator x

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{x}{\sqrt{4 x^{2}+3 x+7}}=\lim _{x \rightarrow-\infty} \frac{1}{\frac{1}{x} \cdot \sqrt{4 x^{2}+3 x+7}}= \\
& =\lim _{x \rightarrow-\infty} \frac{1}{\frac{-1}{\sqrt{x^{2}}} \cdot \sqrt{4 x^{2}+3 x+7}}=\left(\text { since } x=-\sqrt{x^{2}}\right)=\lim _{x \rightarrow-\infty} \frac{1}{-\sqrt{4+\frac{3}{x}+\frac{7}{x^{2}}}}=-\frac{1}{2}
\end{aligned}
$$

NOTE:
similarily, as $x \rightarrow+\infty$ the limit is $\frac{1}{2}$ and the graph has two horizontal asymptotes $y= \pm \frac{1}{2}$.
2. Find the domain and the derivative of f of
(a) $f(x)=\frac{x}{3} e^{-\sin \left(\frac{3}{x}\right)}$
domain is $D=\{x \neq 0\}=(-\infty, 0) \cup(0,+\infty)$
by Product and Chain Rules $\quad f^{\prime}(x)=\left(\frac{x}{3}\right)^{\prime} e^{-\sin \left(\frac{3}{x}\right)}+\frac{x}{3} e^{-\sin \left(\frac{3}{x}\right)} \cdot\left(-\sin \frac{3}{x}\right)^{\prime}=$
$=\frac{1}{3} e^{-\sin \left(\frac{3}{x}\right)}+\frac{x}{3} e^{-\sin \left(\frac{3}{x}\right)}\left(-\cos \frac{3}{x}\right)\left(-\frac{3}{x^{2}}\right)=e^{-\sin \left(\frac{3}{x}\right)}\left(\frac{1}{3}+\frac{1}{x} \cos \frac{3}{x}\right)$
OR use log.diff $\quad \ln |f|=\ln \left|\frac{x}{3}\right|+\ln e^{-\sin \frac{3}{x}}=\ln |x|-\ln 3-\sin \frac{3}{x}$
then $\frac{f^{\prime}}{f}=\frac{1}{x}-0-\cos \frac{3}{x} \cdot\left(3 x^{-1}\right)^{\prime}=\frac{1}{x}-\cos \frac{3}{x}(-3) x^{-2}=\frac{1}{x}+3 x^{-2} \cos \frac{3}{x}$
so $f^{\prime}(x)=\frac{x}{3} e^{-\sin \left(\frac{3}{x}\right)}\left[\frac{1}{x}+\frac{3}{x^{2}} \cos \frac{3}{x}\right]=\ldots .$. as above.
(b) $f(x)=\frac{\ln (2 x-3)}{e^{-x^{2}}}$
for the domain $\quad 2 x-3>0$ so $x>\frac{3}{2}$ and $\left.D=\right] \frac{3}{2},+\infty[$
we can change the function to a product
$f(x)=e^{x^{2}} \cdot \ln (2 x-3)$ then by Product and Chain Rules
$f^{\prime}(x)=e^{x^{2}}(2 x) \ln (2 x-3)+e^{x^{2}} \frac{1}{2 x-3} \cdot 2=2 e^{x^{2}}\left(x \ln (2 x-3)+\frac{1}{2 x-3}\right)$
3. A Sketch the graph of $y=e^{2 x}\left(6 x^{2}-2 x-1\right)$ i.e.
(a) find the domain, range, vertical and horizontal asymptotes, x and y intercepts;
(b) find the intervals where f is increasing or decreasing;local extrema;
(c) find the intervals where f is concave down or up
part a)
domain $D=]-\infty,+\infty[\quad$ No V.A.
For x-intercepts solve $y=0 \quad 6 x^{2}-2 x-1=0 \quad x=\frac{2 \pm \sqrt{28}}{12}=\frac{1}{6} \pm \frac{\sqrt{7}}{6}$
so $x_{1}=-0.27$ and $x_{2}=0.61 \quad$ for $x=0 y=-1 \mathrm{y}$-intercept
For horizontal asymptotes $\lim _{x \rightarrow+\infty} e^{2 x}\left(6 x^{2}-2 x-1\right)=+\infty$

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} e^{2 x}\left(6 x^{2}-2 x-1\right)=" 0 \cdot \infty "=\lim _{x \rightarrow-\infty} \frac{6 x^{2}-2 x-1}{e^{-2 x}}=\frac{\infty}{\infty} \text { L'H. twice } \\
& =\lim _{x \rightarrow-\infty} \frac{12 x-2}{-2 e^{-2 x}}=\lim _{x \rightarrow-\infty} \frac{12}{4 e^{-2 x}}=\frac{1}{\infty}=0 \text { thus } y=0 \text { is H.A. as } x \rightarrow-\infty
\end{aligned}
$$

We will go back to the range later.
part b) by Product Rule
$y^{\prime}=\left(e^{2 x}\right)^{\prime}\left(6 x^{2}-2 x-1\right)+e^{2 x}\left(6 x^{2}-2 x-1\right)^{\prime}=2 e^{2 x}\left(6 x^{2}-2 x-1\right)+e^{2 x}(12 x-2)=$
$=2 e^{2 x}\left(6 x^{2}-2 x-1+6 x-1\right)=4 e^{2 x}\left(3 x^{2}+2 x-1\right)=4 e^{2 x}(3 x-1)(x+1)$
for critical points solve $y^{\prime}=0 \quad x=-1, \frac{1}{3}$
$f(-1)=\frac{7}{e^{2}} \quad f\left(\frac{1}{3}\right)=e^{\frac{2}{3}}\left[\frac{6}{9}-\frac{2}{3}-1\right]=-e^{\frac{2}{3}}$
testing $y^{\prime} \quad--^{p o s}--_{-1}--^{n e g}-_{\frac{1}{3}}-^{p o s}--$
and the function is decreasing on $]-1, \frac{1}{3}[$ increasing on $]-\infty,-1[$ and on $] \frac{1}{3}, \infty[$
and at $x=-1$ we got loc.max and at $x=\frac{1}{3}$ we got abs.minimum
thus the range $\mathcal{R}=\left[-e^{\frac{2}{3}}, \infty[\right.$
part c)
$y^{\prime \prime}=4\left(e^{2 x}\right)^{\prime}\left(3 x^{2}+2 x-1\right)+4 e^{2 x}\left(3 x^{2}+2 x-1\right)^{\prime}=4 e^{2 x}\left(6 x^{2}+4 x-2+6 x+2\right)=$
$=4 e^{2 x}\left(6 x^{2}+10 x\right)=8 e^{2 x} x(3 x+5)$ solve for possible inflection points $y^{\prime \prime}=0$
$x=0 \quad x=-\frac{5}{3}$
testing $y^{\prime \prime} \quad-^{\text {pos }}--_{-\frac{5}{3}}---^{n e g}--_{0}--^{p o s}-$
therefore
the function is concave up on $]-\infty,-\frac{5}{3}[$ and on $] 0,+\infty[$
and it is concave down on $]-\frac{5}{3}, 0[$.
3B
Sketch the graph of $y=x(4-x)^{3}$.Indicate where the function is increasing, decreasing, concave up,concave down;find the domain and range.
1.step
function is a polynomial so $D=]-\infty,+\infty[\quad$ NO V.A.
"ends": $\lim _{x \rightarrow \infty} x(4-x)^{3}=+\infty \cdot(-\infty)=-\infty, \lim _{x \rightarrow-\infty} x(4-x)^{3}=-\infty \cdot(+\infty)=-\infty$
NO H.A. \quad also for $x=0,4 \quad y=0$ intercepts
2.step
by Product Rule $y^{\prime}=1 \cdot(4-x)^{3}+x \cdot 3(4-x)^{2} \cdot(-1)=(4-x)^{2}(4-x-3 x)=$ $4(4-x)^{2}(1-x)$
solve $y^{\prime}=0$ for critical points : $x=1,4$
testing $y^{\prime}-^{+}-^{+}-^{+}-{ }_{1}-^{-}-^{-}-^{-}-{ }_{4}-^{-}-^{-}-^{-}-$
the function is incr.on $]-\infty, 1[$ and decr on $] 1,+\infty[\quad f(1)=27$
and has abs maximum at $x=1$ and horizontal tangents at $x=1$ and $x=4$ thus the range is $\mathcal{R}=]-\infty, 27]$

3.step

$y^{\prime \prime}=4 \cdot 2(4-x)(-1)(1-x)+4(4-x)^{2}(-1)=-4(4-x)(2-2 x+4-x)=$ $12(x-4)(2-x)$
for possible inflection points solve $y^{\prime \prime}=0: x=4,2$
testing $y^{\prime \prime}-^{-}-^{-}-^{-}-{ }_{2}-^{+}-^{+}-{ }_{4}-^{-}-^{-}-^{-}-$
therefore the function is concave up on $] 2,4[$, concave down on $]-\infty, 2[$ and on $] 4,+\infty[$

4. (a) Find the tangent approximation (linearization) of

$$
f(x)=\frac{1}{\sqrt{2 x^{2}+1}} \text { around } x_{0}=2
$$

(b) Use it to estimate $\frac{1}{\sqrt{3}}$.

We need $f(2)=\frac{1}{\sqrt{9}}=\frac{1}{3} \quad$ the point is $P\left(2, \frac{1}{3}\right)$
and $f^{\prime}(x)=\frac{-1}{2}\left(2 x^{2}+1\right)^{-\frac{3}{2}} \cdot 4 x=\frac{-2 x}{\left(\sqrt{2 x^{2}+1}\right)^{3}}$,
$f^{\prime}(2)=-\frac{4}{27} \quad$ so the linearization is $L(x)=\frac{-4}{27}(x-2)+\frac{1}{3}$
the approximation equation $\frac{1}{\sqrt{2 x^{2}+1}} \doteq \frac{-4}{27}(x-2)+\frac{1}{3}$ for x close to 2 .
To get $\frac{1}{\sqrt{3}}$ we have to $2 x^{2}+1=3$ so $x= \pm 1$ but 1 is closer so substitute $x=1 \quad \frac{1}{\sqrt{3}} \doteq \frac{4}{27}+\frac{1}{3}=\frac{13}{27}=0.48$

5. A

Sketch a graph of one function f satisfying all the following conditions:
(a) f is defined on $]-\infty,+\infty[$, continuous there except
(b) f is discontinuous at $x=2,4$ where $\lim _{x \rightarrow 4^{-}} f(x)=f(4)=0, \quad x=2$ is a vertical asymptote.
(c) $y=3$ is a horizontal asymptote and $\lim _{x \rightarrow-\infty} f(x) \underline{\text { does not exist, }}$
(d) f is increasing on $] 3,4[$ and on $] 4,+\infty[, f$ is decreasing on $] 0,2[$ and on $] 2,3[$, and $f^{\prime}(x)=0$ for all $\left.x \in\right]-2,0[$;
(e) f is concave up on $] 0,1[$ and on $] 3,4[; f$ is concave down on $] 1,2[$, on $] 2,3[$ and on $] 4,+\infty$ [;
(f) absolute maximum value is 6 , and local minimum value is -2 .

B
(a) Sketch a graph of one function f satisfying all the following conditions:
(b) f is defined on $] 0, \infty[$
(c) f is discontinuous at $x=1,2,3$ where $\lim _{x \rightarrow 2} f(x)=3, \lim _{x \rightarrow 3} f(x)$, DNE (does not exist).
(d) $x=1$ is V.A., $y=2$ is H.A.
(e) f is increasing on the intervals $] 2,3[] 3,4[] 5, \infty[$
f is decreasing on $] 0,1[$ and on $] 4,5[$
$f^{\prime}(x)=0$ for all $x \in(] 1,2[$

(f) f is concave up on the intervals $] 2,3[$ and $] 4,6[$, concave down on $] 3,4[$ and on $] 6, \infty[$
(g) absolute maximum value is 5 , local minimum value is -1 .

C
Sketch a graph of one function f satisfying all the following conditions:
(a) f is defined on $[-1,+\infty[$ continuous there except
(b) f is discontinuous at $x=1,3$ where $\lim _{x \rightarrow 1} f(x)$ does not exist,.
(c) $x=3$ is a vertical asymptote, and $y=2$ is a horizontal asymptote,
(d) f is increasing on $]-1,0[$ and on $] 3,+\infty[, f$ is decreasing on $] 0,1[$ and on $] 2,3[$, and $f^{\prime}(x)=0$ for all $\left.x \in\right] 1,2[$;
(e) f is concave up on $]-1,0[$,on $] 0,1[$ and on $] 3,4[, f$ is concave down on $] 2,3[$ and on $] 4,+\infty[$;
(f) absolute maximum value is 7 , and local minimum value is 0 .

6. \mathbf{A}

A box with a square base(bottom) and NO top(lid) has a volume of $9 \mathrm{~m}^{3}$.Find the dimensions of the most economical box
if the material for the base costs $\$ 2$ per m^{2} and the material for the sides $\$ 3$ per m^{2}.
the length of the side of the base is x and the height is y then the volume $V=x^{2} y=9$given
looking for min of cost $C=2 \cdot$ area of the base +3 . area of sides $=$
$=2 x^{2}+3 \cdot 4 x y=2 x^{2}+12 x y$
reduce to one variable: $y=\frac{9}{x^{2}}$ so the $\operatorname{cost} C(x)=2 x^{2}+12 x \cdot \frac{9}{x^{2}}=2\left(x^{2}+54 x^{-1}\right), x>0$
for critical points $C^{\prime}(x)=2\left(2 x-54 x^{-2}\right)=4 \cdot \frac{x^{3}-27}{x^{2}}=0$ means $x^{3}=27$
and $x=3 \mathrm{~m} \quad y=1 \mathrm{~m}$
to justify that we have found minimum $\quad C^{\prime \prime}(x)=4\left(1+54 x^{-3}\right)>0$ for $x>0$
so function is concave up and the critical point is minimum
B
A landscape architect plans to enclose a $280 \mathrm{~m}^{2}$ rectangular region in a botanical garden.
She will use shrubs costing $\$ 25.00$ per meter along three sides and fencing costing $\$ 10.00$ per meter along the fourth side.
Find the dimensions of the region to minimize the total cost.

Draw a diagram and name the variables: fenced side x, the other side y the area $A=x y=280$ is given and we are looking for minimum of the cost $C=25(x+2 y)+10 x=35 x+50 y$
reduce to one variable : $y=\frac{280}{x}$ thus $C(x)=35 x+\frac{280 \cdot 50}{x}$ and
$C^{\prime}(x)=35-\frac{400 \cdot 35}{x^{2}} . \quad$ Solve $C^{\prime}=0$
$35\left(1-\frac{400}{x^{2}}\right)=35\left(\frac{x^{2}-400}{x^{2}}\right)=0 \quad$ so $\quad x^{2}=400 \quad$ and $x=20 \mathrm{~m} \quad(x>0)$
back to $y=\frac{280}{20}=14 \mathrm{~m}$
To justify that we have found minimum use $C^{\prime \prime}(x)=\frac{28000}{x^{3}}>0$ so the function is concave up
and the critical point is a minimum.
(OR $C^{\prime}>0$ for $x>20$ and $C^{\prime}<0$ for $x<20$)
Thus the dimensions are $20 m \times 14 m$ with one of the longer sides to be fenced.
7. Evaluate:
(a) for $x>0$

$$
\int \frac{3 \sqrt{x}-5}{x \sqrt{x}} d x=3 \int \frac{1}{x} d x-5 \int x^{-\frac{3}{2}} d x=3 \ln |x|-5 \cdot(-2) x^{-\frac{1}{2}}+c=3 \ln x+\frac{10}{\sqrt{x}}+c
$$

(b) $\int 2 x^{3} \sqrt{2 x^{2}+3} d x$
by substitution $u=2 x^{2}+3 \quad d u=4 x d x \quad \frac{1}{2} d u=2 x d x$
the integral $=\int x^{2} \sqrt{2 x^{2}+3} \cdot 2 x d x=\frac{1}{2} \int(?) \sqrt{u} d u=$
from the substitution $\frac{u-3}{2}=x^{2}$ so
the integral $=\frac{1}{2} \int \frac{u-3}{2} \sqrt{u} d u=\frac{1}{4} \int(u-3) \sqrt{u} d u=\frac{1}{4} \int u^{\frac{3}{2}} d u-\frac{3}{4} \int u^{\frac{1}{2}} d u=$
$=\frac{1}{4} \cdot \frac{2}{5} u^{\frac{5}{2}}-\frac{3}{4} \cdot \frac{2}{3} u^{\frac{3}{2}}+c=$
$($ back to x$)=\frac{1}{10}\left(2 x^{2}+3\right)^{\frac{5}{2}}-\frac{1}{2}\left(2 x^{2}+3\right)^{\frac{3}{2}}+c \quad$ for any x.
(c) $\int \sin \frac{x}{3} d x=\frac{-\cos \frac{x}{3}}{\frac{1}{3}}+c=-3 \cos \frac{x}{3}+c \quad$ for any x .

8. (a) by substitution $u=x^{2} \quad d u=2 x d x \quad \frac{1}{2} d u=x d x$ and | x | u |
| :--- | :--- |
| 2 | 4 |
| 3 | 9 |

$$
\begin{aligned}
& \int_{2}^{3} x 2^{x^{2}} d x=\frac{1}{2} \int_{4}^{9} 2^{u} d u=\frac{1}{2}\left[\frac{2^{u}}{\ln 2}\right]_{4}^{9}=\frac{1}{2 \ln 2}\left[2^{9}-2^{4}\right]=\frac{2^{4}}{2 \ln 2}\left[2^{5}-1\right]=\frac{8}{\ln 2} \cdot 31=
\end{aligned}
$$

by substitution $u=3-2 x \quad d u=-2 d x \quad-\frac{1}{2} d u=d x \quad$ and | x | u |
| :---: | :---: |
| 0 | 3 |
| 1 | 1 |

(b) $\int_{0}^{1} \frac{4 x+3}{3-2 x} d x=-\frac{1}{2} \int_{3}^{1} \frac{?}{u} d u=\frac{1}{2} \int_{1}^{3} \frac{?}{u} d u=$ from the substitution
$2 x=3-u$ so $4 x=6-2 u$ and $4 x+3=9-2 u$
therefore the integral
$=\frac{1}{2} \int_{1}^{3} \frac{9-2 u}{u} d u=\frac{9}{2} \int_{1}^{3} \frac{1}{u} d u-\int_{1}^{3} d u=\frac{9}{2}[\ln |u|]_{1}^{3}-[3-1]=\frac{9}{2} \ln 3-2$.
(c) $\int_{e}^{e^{2}} \frac{1}{x \ln x} d x=\int_{1}^{2} \frac{1}{u} d u=[\ln |u|]_{1}^{2}=\ln 2$

by substitution $u=\ln x \quad d u=\frac{d x}{x} \quad$ and since $\ln e^{k}=k$| x | u |
| :--- | :--- |
| e | 1 |
| e^{2} | 2 |

