MATH 249 Worksheet #1-Solutions

1. (a) Solve for x: $|2x + 1| \le |x - 2|$ (b) Solve for x: $\frac{3}{x + 1} > \frac{1}{3}$.

For 1 a)

Since |...| is always positive or zero we can square both sides and the sign of the inequality

stays the same: $(2x + 1)^2 \le (x - 2)^2$ since $|...|^2 = (...)^2$ Now $4x^2 + 4x + 1 \le x^2 - 4x + 4$, everything on one side: $3x^2 + 8x - 3 \le 0$ $(3x - 1)(x + 3) \le 0$, thus split points are: $x = -3, \frac{1}{3},$ testing: $-\frac{pos}{2} - \frac{-3}{3} - \frac{neg}{-\frac{1}{3}} - \frac{pos}{-\frac{1}{3}} - \frac{pos}{-\frac{1$

solution set: (-1, 8).

2. Find the radius and centre of the circle $x^2 + 4x + y^2 - 2y = 11$.

For 2)

Complete the squares: $(x+2)^2 - 4 + (y-1)^2 - 1 = 11$ so $(x+2)^2 + (y-1)^2 = 16$ thus r = 4 and the point (-2, 1) is the centre.

- 3. Solve for x:
 - (a) |x+1| + 2 > 0(b) $\frac{3}{x+1} \ge \frac{2}{x+3}$.

For 3a)

Since |...| is always positive or zero |x+1| + 2 is always positive , so solution set $(-\infty, +\infty)$

 $\mathbf{b})$

 $x \neq -1, -3$

everything on one side and common denominator: $\frac{3(x+3)-2(x+1)}{(x+1)(x+3)} \ge 0, \text{simplify:}$ $\frac{3x+9-2x-2}{(x+1)(x+3)} \ge 0 \text{ then } \frac{(x+7)}{(x+1)(x+3)} \ge 0. \text{ So split points are : } x = -7, -3, -1$ testing: $-^{neg} -_{-7} - -^{pos} -_{-3} - -^{neg} -_{-1} - -^{pos} - -$ solution set: $[-7, -3) \cup (-1, +\infty)$

- 4. Given four lines $l_1: 3x + 2y = 1$ $l_2: 2y 3x = 0$ $l_3: 3x 2y = 0$ and $l_4: 2x 3y = 2$ choose all which are
 - (a) parallel
 - (b) perpendicular.

For 4)

Find slopes: $m_1 = -\frac{3}{2}$, $m_2 = \frac{3}{2}$, $m_3 = \frac{3}{2}$, $m_4 = \frac{2}{3}$ so $l_2 \parallel l_3$ since they have the same slope

and $l_1 \perp l_4$ since $m_1 \cdot m_4 = -1$.

- 5. Solve for x:
 - (a) $\frac{1}{x+1} \le 1+x$ (b) |3x-2| > 0.

For 5 a)

$$x \neq -1$$

everything on one side and common denominator: $\frac{1-(x+1)^2}{(x+1)} \le 0$, simplify: $\frac{1-x^2-2x-1}{(x+1)} \le 0$ then $\frac{-x(x+2)}{(x+1)} \le 0$. So split points are : x = 0, -2, -1

testing -pos - -2 - neg - 1 - pos - -0 - neg - solution set: $[-2, -1) \cup [0, +\infty)$ **b**)

Since |...| is always positive or zero we have to elliminate zero 3x - 2 = 0 for $x = \frac{2}{3}$. The solutions : $x \neq \frac{2}{3}$ or $\left(-\infty, \frac{2}{3}\right) \cup \left(\frac{2}{3}, +\infty\right)$

6. Find an equation of the line perpendicular to the x-axis passing through the point (-1,3).

For 6)

 \perp to x-axis means a vertical line so x = -1 (y is any).

7. Solve for x:

(a)
$$3x + 7 > x^2$$

(b) $\frac{x}{2} < \frac{2}{x+3}$.

For 7 a)

Everything on one side: $0 > x^2 - 3x - 7$ now find the roots ,first discriminant $D = (-3)^2 - 4 \cdot 1 \cdot (-7) = 9 + 28 = 37$, so using the formula roots are $x_1 = \frac{3 - \sqrt{37}}{2} = -1.54$ and $x_2 = \frac{3 + \sqrt{37}}{2} = 4.54$ Now testing : $- \frac{pos}{-x_1} - \frac{neg}{-x_2} - \frac{pos}{-x_2}$ OR parabola open up is below the x-axis if $x \in (x_1, x_2) = (-1.54, 4.54)$. **b**) $x \neq -3$ everything on one side and common denominator: $\frac{x(x+3) - 2 \cdot 2}{2(x+3)} < 0$,simplify: $\frac{x^2 + 3x - 4}{2(x+3)} < 0$ then $\frac{(x+4)(x-1)}{2(x+3)} < 0$.So split points are : x = -4, -3, 1(a)

testing: $-\frac{neg}{-1} - \frac{-pos}{-4} - \frac{-pos}{-3} - \frac{neg}{-1} - \frac{-pos}{-4} - \frac{-pos$

8. Which of the given circles has bigger radius

$$x^{2} - 6x + y^{2} = 7$$
 or $x^{2} + y^{2} + 2y = 15$?

For 8)

Complete squares : $(x-3)^2 - 9 + y^2 = 7$, $x^2 + (y+1)^2 - 1 = 15$ SO the equations are: $(x-3)^2 + y^2 = 16$, $x^2 + (y+1)^2 = 16$ thus radii are the same r = 4, the centres are points (3,0) and (0,-1).