MATH 249

Worksheet \#1-Solutions

1. (a) Solve for $\mathrm{x}: \quad|2 x+1| \leq|x-2|$
(b) Solve for x : $\frac{3}{x+1}>\frac{1}{3}$.

For 1 a)
Since $|\ldots|$ is always positive or zero we can square both sides and the sign of the inequality
stays the same: $(2 x+1)^{2} \leq(x-2)^{2}$ since $|\ldots|^{2}=(\ldots)^{2}$ Now
$4 x^{2}+4 x+1 \leq x^{2}-4 x+4$,everything on one side: $3 x^{2}+8 x-3 \leq 0$
$(3 x-1)(x+3) \leq 0$, thus split points are: $x=-3, \frac{1}{3}$,
testing: $\quad--^{\text {pos }}---_{3}--^{\text {neg }}--_{\frac{1}{3}}--^{\text {pos }}---$
so the solutions set : $\left[-3, \frac{1}{3}\right]$
b)
$x \neq-1$
everything on one side and common denominator: $\frac{3 \cdot 3-(x+1)}{(x+1) 3}>0$,simplify:
$\frac{9-x-1}{3(x+1)}>0$ then $\frac{8-x}{(x+1)(3)}>0$. So split points are : $x=8,-1$
testing: $\quad--^{n e g}---{ }_{-1}--^{p o s}--_{8}--^{n e g}---$
solution set: $(-1,8)$.
2. Find the radius and centre of the circle $x^{2}+4 x+y^{2}-2 y=11$.

For 2)

Complete the squares: $(x+2)^{2}-4+(y-1)^{2}-1=11$ so $(x+2)^{2}+(y-1)^{2}=16$ thus $r=4$ and the point $(-2,1)$ is the centre.
3. Solve for x :
(a) $|x+1|+2>0$
(b) $\frac{3}{x+1} \geq \frac{2}{x+3}$.

For 3a)

Since $|\ldots|$ is always positive or zero $|x+1|+2$ is always positive ,so solution set $(-\infty,+\infty)$
b)
$x \neq-1,-3$
everything on one side and common denominator: $\frac{3(x+3)-2(x+1)}{(x+1)(x+3)} \geq 0$,simplify: $\frac{3 x+9-2 x-2}{(x+1)(x+3)} \geq 0$ then $\frac{(x+7)}{(x+1)(x+3)} \geq 0$.So split points are $: x=-7,-3,-1$ testing: $\quad-^{n e g}-_{-7}---^{p o s}---_{-3}--^{n e g}--_{-1}--^{p o s}---$ solution set: $[-7,-3) \cup(-1,+\infty)$
4. Given four lines $l_{1}: 3 x+2 y=1 l_{2}: 2 y-3 x=0 l_{3}: 3 x-2 y=0$ and $l_{4}: 2 x-3 y=2$ choose all which are
(a) parallel
(b) perpendicular.

For 4)

Find slopes: $m_{1}=-\frac{3}{2}, m_{2}=\frac{3}{2}, m_{3}=\frac{3}{2}, m_{4}=\frac{2}{3}$ so $l_{2} \| l_{3}$ since they have the same slope and $l_{1} \perp l_{4}$ since $m_{1} \cdot m_{4}=-1$.
5. Solve for x :
(a) $\frac{1}{x+1} \leq 1+x$
(b) $|3 x-2|>0$.

For 5 a)

$x \neq-1$
everything on one side and common denominator: $\frac{1-(x+1)^{2}}{(x+1)} \leq 0$,simplify:
$\frac{1-x^{2}-2 x-1}{(x+1)} \leq 0$ then $\frac{-x(x+2)}{(x+1)} \leq 0$. So split points are : $x=0,-2,-1$
testing $\quad-^{p o s}--_{-2}--^{n e g}-_{-1}--^{p o s}---_{0}--^{n e g}--$
solution set: $[-2,-1) \cup[0,+\infty)$
b)

Since $|\ldots|$ is always positive or zero we have to elliminate zero : $3 x-2=0$ for $x=\frac{2}{3}$
The solutions : $x \neq \frac{2}{3}$ or $\left(-\infty, \frac{2}{3}\right) \cup\left(\frac{2}{3},+\infty\right)$
6. Find an equation of the line perpendicular to the x -axis passing through the point $(-1,3)$.

For 6)

\perp to x -axis means a vertical line so $x=-1$ (y is any).
7. Solve for x :
(a) $3 x+7>x^{2}$
(b) $\frac{x}{2}<\frac{2}{x+3}$.

For 7 a)

Everything on one side: $0>x^{2}-3 x-7$ now find the roots, first discriminant $D=(-3)^{2}-4 \cdot 1 \cdot(-7)=9+28=37$, so using the formula roots are $x_{1}=\frac{3-\sqrt{37}}{2}=-1.54$ and $x_{2}=\frac{3+\sqrt{37}}{2}=4.54$
Now testing : $--^{\text {pos }}--_{x_{1}}--^{\text {neg }}---_{x_{2}}--^{\text {pos }}-$
OR parabola open up is below the x -axis if $x \in\left(x_{1}, x_{2}\right)=(-1.54,4.54)$.
b)
$x \neq-3$
everything on one side and common denominator: $\frac{x(x+3)-2 \cdot 2}{2(x+3)}<0$,simplify:
$\frac{x^{2}+3 x-4}{2(x+3)}<0$ then $\frac{(x+4)(x-1)}{2(x+3)}<0$.So split points are : $x=-4,-3,1$
(a)
testing: $-^{\text {neg }}--_{-4}--^{p o s}--_{-3}-^{n e g}--_{1}-^{p o s}--$
solution set: $(-\infty,-4) \cup(-3,1)$.
8. Which of the given circles has bigger radius

$$
x^{2}-6 x+y^{2}=7 \text { or } x^{2}+y^{2}+2 y=15 ?
$$

For 8)

Complete squares : $(x-3)^{2}-9+y^{2}=7, x^{2}+(y+1)^{2}-1=15$ SO the equations are: $(x-3)^{2}+y^{2}=16, x^{2}+(y+1)^{2}=16$ thus radii are the same $r=4$, the centres are points $(3,0)$ and $(0,-1)$.

