The University of Calgary Department of Mathematics and Statistics MATH 249 Worksheet #4

1. Find an equation of the tangent line to

$$\sqrt{x^2 - y} = \frac{9x}{y} - 1$$

at the point P (5,9).

- 2. Find a general antiderivative of $f(x) = \frac{5\sqrt{x} 6x^3 8x^2 + 3}{x^2}$ for x > 0.
- 3. Solve $y'' = 2\sin(\pi 2x)$ with $y'(\pi) = 0$ and $y(\pi) = 3$.
- 4. Solve for x: $\frac{1}{2^{x+1}} = \frac{5}{4^x}$.
- 5. Find y' in terms of x and y if $2x + 3y = \frac{y^2}{x+1}$.
- 6. Find a general antiderivative of $f(x) = \frac{1}{\cos^2(3x-1)}$ in the domain (find the domain).
- 7. Solve $y'' = \frac{3}{\sqrt{x}} 6x$, y'(4) = 2, y(4) = 0.
- 8. Solve for x:
 - (a) $\frac{1}{2}\ln(x+3) + 1 = 0$ (b) $3^{x^2} = 9^{x-3}$.
- 9. Find an equation of the tangent line at the point $(6, \pi)$ to

$$2\cos\frac{y}{x} + \frac{xy}{6} = \sqrt{3} + \pi.$$

10. Solve (i.e. find y including an interval)

$$y' = \frac{1}{\left(5 - x\right)^3}$$

with y(4) = 1

11. Solve for x:
$$\log_4(x+4) - 2\log_4(x+1) = \frac{1}{2}$$

12. Find $\int \left(3\sqrt{x} - \frac{1}{3x}\right)^2 dx$ for x > 0.