MATH 249

Midterm Handout

1. Evaluate

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(x^{2}-x^{2} \cos \frac{1}{x}\right) \\
& =\lim _{x \rightarrow \infty} x^{2}\left(1-\cos \frac{1}{x}\right)=" \infty \cdot 0^{\prime \prime} \quad u=\frac{1}{x}, u \rightarrow 0^{+} \\
& \text {so }=\lim _{u \rightarrow 0^{+}} \frac{(1-\cos u)}{u^{2}} \cdot \frac{(1+\cos u)}{(1+\cos u)}=\lim _{u \rightarrow 0^{+}} \frac{\left(1-\cos ^{2} u\right)}{u^{2}(1+\cos u)}= \\
& \quad=\lim _{u \rightarrow 0^{+}} \frac{\sin ^{2} u}{u^{2}(1+\cos u)}=\lim _{u \rightarrow 0^{+}}\left(\frac{\sin u}{u}\right)^{2} \cdot \lim _{u \rightarrow 0^{+}} \frac{1}{(1+\cos u)}=\frac{1}{2} .
\end{aligned}
$$

2. Evaluate
(a) $\lim _{x \rightarrow 0} \frac{\sin x}{x-\pi}=\frac{0}{-\pi}=0$
(b) $\lim _{x \rightarrow \pi} \frac{\sin x}{x-\pi}={ }^{\prime} \frac{0}{0} "=\lim _{u \rightarrow 0} \frac{\sin (u+\pi)}{u}=\lim _{u \rightarrow 0} \frac{-\sin u}{u}=-1$
where $x-\pi=u$
and $\sin (u+\pi)=\sin u \cos \pi+\cos u \sin \pi, \cos \pi=-1, \sin \pi=0$
(c) $\lim _{x \rightarrow-\infty} \frac{\sin x}{x-\pi}=0$ by Squeeze Th. since $-1 \leq \sin x \leq 1(x-\pi<0)$

$$
\frac{-1}{x-\pi} \geq \frac{\sin x}{x-\pi} \geq \frac{1}{x-\pi} \text { and } \lim _{x \rightarrow-\infty} \frac{ \pm 1}{x-\pi}=0
$$

3. For $y=\frac{\cos \pi x}{1-x}$ find an equation of the tangent line at $x=-\frac{1}{2}$.
for $x=\frac{-1}{2} \quad y=\frac{\cos \left(\pi \frac{-1}{2}\right)}{\frac{3}{2}}=0$ so the point is $\left(\frac{-1}{2}, 0\right)$
use Q.R. to find $y^{\prime}=\frac{-\pi \sin \pi x(1-x)-\cos \pi x(-1)}{(1-x)^{2}}$
at $x=-\frac{1}{2} \quad \cos \frac{-\pi}{2}=0, \sin \frac{-\pi}{2}=-1$ so $y=0$ and
$y^{\prime}=\frac{3 \frac{\pi}{2}}{\frac{9}{4}}=\frac{2 \pi}{3}=m \ldots$ slope \quad tangent $y=\frac{2 \pi}{3}\left(x+\frac{1}{2}\right)$
4. For $y=\left(\sin \frac{1}{\sqrt{x^{4}+1}}\right)^{3}$ find y^{\prime}.
use Chain Rule twice

$$
\begin{aligned}
& y^{\prime}=3\left(\sin \frac{1}{\sqrt{x^{4}+1}}\right)^{2}\left(\sin \frac{1}{\sqrt{x^{4}+1}}\right)^{\prime}=3\left(\sin \frac{1}{\sqrt{x^{4}+1}}\right)^{2}\left(\cos \frac{1}{\sqrt{x^{4}+1}}\right)\left(\left(x^{4}+1\right)^{-\frac{1}{2}}\right)^{\prime}= \\
& =3\left(\sin \frac{1}{\sqrt{x^{4}+1}}\right)^{2}\left(\cos \frac{1}{\sqrt{x^{4}+1}}\right)\left(-\frac{1}{2}\right)\left(\left(x^{4}+1\right)^{-\frac{3}{2}}\right) 4 x^{3}=\frac{-6 x^{3} \sin ^{2} \frac{1}{\sqrt{x^{4}+1}} \cos \frac{1}{\sqrt{x^{4}+1}}}{\left(x^{4}+1\right)^{\frac{3}{2}}}
\end{aligned}
$$

5. Show that the function $f(x)=x-2 \sin (\pi x)$ has at least one positive zero i.e.
$f(x)=0$ at least for one $x>0$.
SOLUTION
the function is continuous everywhere and $f\left(\frac{1}{2}\right)=\frac{1}{2}-2 \sin \frac{\pi}{2}=-\frac{3}{2}<0$ and $f(1)=$ $1-2 \sin \pi=1>0$
so by IVT there must be an c between $\frac{1}{2}$ and 1 where $f(c)=0$.
6. Locate all 3 roots of $p(x)=2 x^{3}-6 x^{2}+7$ i.e.
find 3 intervals each containing one root. Sketch the graph of $y=p(x)$.

SOLUTION

the polynomial p is continuous everywhere and $\quad p(0)=7>0$
and $p(-1)=-2-6+7=-1<0$ so by IVT(intermediate value theorem)
there must be one root r_{1} between -1 and $\left.0 \quad r_{1} \in\right]-1,0[$
since $p(1)=2-6+7=3>0$ and $p(2)=16-24+7=-1<0$
so by IVT there is another root between 1 and $\left.2 \quad r_{2} \in\right] 1,2[$
finally $p(3)=54-54+7=7>0$
by IVT there is a root $\left.r_{3} \in\right] 2,3[$
7. Find $\sec \theta \quad$ if $\sin \theta=\frac{1}{5}$ and $\frac{\pi}{2}<\theta<\frac{3}{2} \pi$.

SOLUTION
$\cos \theta= \pm \sqrt{1-\sin ^{2} \theta}= \pm \sqrt{1-\frac{1}{25}}= \pm \sqrt{\frac{24}{25}}= \pm \frac{\sqrt{24}}{5}$ but since θ is in the second quadrant
\cos must be negative and $\sec \theta=\frac{1}{\cos \theta}=-\frac{5}{\sqrt{24}}$.
8. If $\cos \theta=\frac{2}{3}$ and $\pi<\theta<2 \pi$ find $\sin \theta$ and then $\sin 2 \theta$.

SOLUTION
$\sin \theta= \pm \sqrt{1-\cos ^{2} \theta}= \pm \sqrt{1-\frac{4}{9}}= \pm \sqrt{\frac{5}{9}}= \pm \frac{\sqrt{5}}{3}$ but since θ is in the forth quadrant \sin must be negative
$\sin \theta=-\frac{\sqrt{5}}{3}$. Now $\sin 2 \theta=2 \sin \theta \cos \theta=2 \cdot\left(\frac{-\sqrt{5}}{3}\right) \cdot \frac{2}{3}=-\frac{4 \sqrt{5}}{9}$.
9. Find the values of a and b so that the function f is continuous everywhere

$$
f(x)=\left\{\begin{array}{ccc}
\left(\frac{2}{2 x+1}-3\right)\left(4 x^{2}-1\right) & \text { for } & x<-\frac{1}{2} \\
a x+b & \text { for } & -\frac{1}{2} \leq x \leq 2 \\
\cos \left(-\frac{\pi}{x}\right) & \text { for } & x>2
\end{array} .\right.
$$

SOLUTION

The function is continuous except $x=-\frac{1}{2}$ and $x=2$
$f\left(-\frac{1}{2}\right)=\frac{-1}{2} a+b=\lim _{x \rightarrow-\frac{1}{2}^{+}} f(x)$ and $\lim _{x \rightarrow-\frac{1}{2}^{-}} f(x)=\lim _{x \rightarrow-\frac{1}{2}^{-}}\left(\frac{2}{2 x+1}-3\right)\left(4 x^{2}-1\right)=$ $\lim _{x \rightarrow-\frac{1^{-}}{-}}\left(\frac{2-3(2 x+1)}{2 x+1}\right)\left(4 x^{2}-1\right)$
$=\lim _{x \rightarrow-\frac{1}{2}^{-}}\left(\frac{2-6 x-3}{2 x+1}\right)(2 x-1)(2 x+1)=\lim _{x \rightarrow-\frac{1}{2}^{-}}(-1-6 x)(2 x-1)=2 \cdot(-2)=-4$
All 3 numbers must be the same so $\quad \frac{-1}{2} a+b=-4$
Similarly,for $x=2$
$f(2)=2 a+b=\lim _{x \rightarrow 2^{-}} f(x)$ and $\lim _{x \rightarrow 2^{+}} \cos \frac{-\pi}{x}=\cos \frac{-\pi}{2}=0$
All 3 numbers must be the same so $2 a+b=0 \rightarrow \rightarrow b=-2 a$
back to $\frac{-1}{2} a+b=-4 \quad a\left(\frac{-1}{2}-2\right)=-4 \Rightarrow a\left(\frac{-5}{2}\right)=-4$
so $a=\frac{8}{5}$ and $b=-2 a=\frac{-16}{5}$.
10. Find the values of a and b so that the function f is continuous everywhere

$$
f(x)=\left\{\begin{array}{ccc}
\cos (\pi x)-2 \sin \frac{\pi x}{2} & \text { for } & x>3 \\
a x^{2}+b & \text { for } & 0 \leq x \leq 3 \\
6 \cdot \frac{\sqrt{9-x}-3}{x} & \text { for } & x<0
\end{array}\right.
$$

SOLUTION

The function is continuous except $x=3$ and $x=0$
$f(3)=9 a+b=\lim _{x \rightarrow 3^{-}} f(x)$ and
$\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}\left[\cos (\pi x)-2 \sin \frac{\pi x}{2}\right]=\cos (3 \pi)-2 \sin \frac{3 \pi}{2}=-1-2(-1)=1$
All 3 numbers must be the same so $9 a+b=1$
Similarly,for $x=0$
$f(0)=b=\lim _{x \rightarrow 0^{+}} f(x)$ and $\lim _{x \rightarrow 0^{-}} 6 \cdot \frac{\sqrt{9-x}-3}{x} \cdot \frac{\sqrt{9-x}+3}{\sqrt{9-x}+3}=6 \lim _{x \rightarrow 0^{-}} \frac{9-x-3^{2}}{x(\sqrt{9-x}+3)}=$
$=6 \lim _{x \rightarrow 0^{-}} \frac{-x}{x(\sqrt{9-x}+3)}=6 \lim _{x \rightarrow 0^{-}} \frac{-1}{(\sqrt{9-x}+3)}=\frac{-6}{6}=-1$
All 3 numbers must be the same so $b=-1$
substitute $b=-1$ in the first equation $\quad 9 a-1=1 \quad a=\frac{2}{9}$ and $b=-1$.

D

