MATHEMATICS 251 FINAL EXAMINATION, FALL 2001

TIME: 2 HOURS
SHOW ALL WORK. SIMPLIFY ALL ANSWERS AS MUCH AS POSSIBLE. NO CALCULATORS PLEASE. THE MARKS FOR EACH PROBLEM ARE GIVEN TO THE LEFT OF THE PROBLEM NUMBER. TOTAL MARKS [80].
[5] 1. Find and simplify $\frac{d}{d x}\left(\sqrt{x \tan ^{2} x-4}\right)$.
[5] 2. Find and simplify $\frac{d}{d x}\left(\frac{\sin \left(6-x^{3 / 2}\right)}{e^{x^{5}}-2}\right)$.
[6] 3. Find and simplify the equation of the tangent line to the curve $y=2 x-\cos 3 x$ at the point where $x=0$.
[6] 4. Find and simplify $\frac{d y}{d x}$ where $y \ln x-x \ln y=8$.
[6] 5. USE THE DEFINITION OF DERIVATIVE to find $\frac{d}{d x}\left(\frac{1}{2 x-1}\right)$.
[6] 6. Use the derivative of the natural logarithm function, and implicit differentiation, to prove the formula for $\frac{d}{d x} e^{x}$.
[8] 7. A spotlight is on the ground pointing towards a high wall 20 metres away. A child 1 metre tall is standing near the wall so that her shadow is cast onto the wall as in the picture. The child begins to run at 2 metres per second towards the spotlight. How fast is the length of her shadow changing at the instant that she is halfway between the wall and the spotlight?
[10] 8. For the function $f(x)=x-3 x^{2 / 3}$, find the following, if any: the x and y intercepts, horizontal and vertical asymptotes, intervals of increase and decrease, relative maxima and minima, intervals of concave up and concave down, and inflection points. Then draw the graph of the function.
[8] 9. Find the point(s) on the curve $x^{2}-2 y^{2}=1$ which are closest to the point $(0,6)$.
[5] 10. Find and simplify $\int \sec 2 x \tan 2 x d x$.
[5] 11. Find and simplify $\int_{0}^{1} \frac{x^{3}}{\left(x^{4}+3\right)^{3 / 2}} d x$.
[5] 12. Find constants a and b so that the function $f(x)=\left\{\begin{array}{ll}a x^{2}+b, & x \leq 2 \\ x^{3}, & x>2\end{array}\right.$ is differentiable at $x=2$.
[5] 13. Find and simplify $\lim _{x \rightarrow 0}\left(e^{3 x}-1\right) \cot 4 x$.

TIME: 2 HOURS
SHOW ALL WORK. SIMPLIFY ALL ANSWERS AS MUCH AS POSSIBLE. NO CALCULATORS PLEASE. THE MARKS FOR EACH PROBLEM ARE GIVEN TO THE LEFT OF THE PROBLEM NUMBER. TOTAL MARKS [75].
[5] 1. Find and simplify $\lim _{x \rightarrow-5}\left(\frac{25-x^{2}}{2 x^{2}+3 x-35}\right)$.
[5] 2. Find and simplify $\frac{d}{d x} \ln \left(x^{3}-\cos x\right)$.
[5] 3. Find and simplify $\frac{d}{d x}\left(x \tan \left(e^{5 x}\right)\right)$.
[5] 4. Find and simplify $\frac{d}{d x}\left(\frac{(1-x)^{1 / 3}}{3-\sqrt{x}}\right)$.
[6] 5. Do ONE of the following two problems.
(a) Use implicit differentiation to find and simplify $\frac{d y}{d x}$ where $\sin (5 x-y)+2 x=y^{2}+7$.
(b) Use logarithmic differentiation to find and simplify $\frac{d}{d x}\left((\sec x)^{4 x}\right)$.
[6] 6. Find and simplify the equation of the tangent line to the curve $y=\frac{8}{(x-1)^{2}}$ at the point where $x=3$.
[6] 7. USE THE DEFINITION OF DERIVATIVE to find $\frac{d}{d x}(\sqrt{4-3 x})$.
[10] 8. You are given the function $f(x)=x-4 \sqrt{x}$, and that

$$
f^{\prime}(x)=1-\frac{2}{\sqrt{x}}, \quad f^{\prime \prime}(x)=\frac{1}{x^{3 / 2}}
$$

For the function $f(x)$, find: (a) the domain of f; (b) the critical points; (c) the intervals of increase and decrease; (d) the intervals of concave up and concave down; (e) all local maxima and local minima. Also find (f) the absolute maximum and absolute minimum of $f(x)$ on the interval $[0,25]$.
[6] 9. Find constants k and ℓ so that the function

$$
f(x)= \begin{cases}k-2 x & \text { if } x \leq 2 \\ \ell \sqrt{x+7} & \text { if } x>2\end{cases}
$$

is both continuous and differentiable at $x=2$.
[5] 10. Find and simplify $\int \frac{x^{2}}{\left(x^{3}-8\right)^{3}} d x$.
[5] 11. Find and simplify $\int e^{-x} \cos \left(e^{-x}\right) d x$.
[5] 12. Find and simplify $\int_{-2}^{3}(5-4 x) d x$.
[6] 13. A rectangle has its base on the x axis and its upper two vertices on the parabola $y=12-x^{2}$. What is the largest perimeter the rectangle can have, and what are its dimensions?
[75]

MATHEMATICS 249 FINAL EXAMINATION, WINTER 2003
TIME: 2 HOURS
SHOW ALL WORK. SIMPLIFY ALL ANSWERS AS MUCH AS POSSIBLE. NO CALCULATORS PLEASE. THE MARKS FOR EACH PROBLEM ARE GIVEN TO THE LEFT OF THE PROBLEM NUMBER. TOTAL MARKS [75].
[5] 1. Find and simplify $\frac{d}{d x}\left(\frac{x}{x^{3}-\ln x}\right)$.
[5] 2. Find and simplify $\frac{d}{d x}\left(e^{\sec ^{2} x}\right)$.
[5] 3. Find and simplify $\frac{d}{d x}\left((\tan 3 x) \sqrt{1-x^{2}}\right)$.
[5] 4. Use logarithmic differentiation to find and simplify $\frac{d}{d x}\left((x+1)^{\sqrt{x}}\right)$.
[8] 5. (a) Use implicit differentiation to find and simplify $\frac{d y}{d x}$ where $e^{x}+\ln y=\cos x+\sin (\pi y)$.
(b) Verify that the point $(0,1)$ lies on the graph of $e^{x}+\ln y=\cos x+\sin (\pi y)$.
(c) Find the equation of the tangent line to the graph of $e^{x}+\ln y=\cos x+\sin (\pi y)$ at the point $(0,1)$.
[5] 6. Prove the formula for $\frac{d}{d x}(\cot x)$. You may use the formulas for the derivatives of $\sin x$ and $\cos x$.
[6] 7. USE THE DEFINITION OF DERIVATIVE to find $\frac{d}{d x}\left(\frac{1}{4-x^{2}}\right)$.
[10] 8. For the function $f(x)=\frac{x^{1 / 3}}{x-2}$,
(a) show that $f^{\prime}(x)=-\frac{2 x+2}{3 x^{2 / 3}(x-2)^{2}}$.

Then find (b) the domain of $f(x)$; (c) the critical points; (d) the intervals of increase and decrease; (e) all local maxima and local minima.
[5] 9. For the function $f(x)=x e^{x}$, you are given that $f^{\prime}(x)=(x+1) e^{x}$ and $f^{\prime \prime}(x)=(x+2) e^{x}$. Find the intervals on which $f(x)$ is concave up and where it is concave down. Then find all points of inflection.
[5] 10. Find all constants k so that the function

$$
f(x)= \begin{cases}x^{3}+4 x^{2}+x+7 & \text { if } x \leq k \\ 7-3 x & \text { if } x>k\end{cases}
$$

is continuous at $x=k$. Also, for each such value of k, determine whether $f(x)$ is differentiable at $x=k$.
[5] 11. Find and simplify $\int \sqrt{\sin 4 x} \cos 4 x d x$.
[5] 12. Find and simplify $\int_{0}^{1}\left(x^{1 / 3}-x^{3}\right) d x$.
[6] 13. Do ONE of the following two problems.
(a) A ladder 4 metres long is leaning against a house (see Figure (a)). Its base starts to slide away from the house at $1 / 2$ metre per second. How fast is the top of the ladder moving down the house when the top is 3 metres from the ground?
(b) A rectangle has its base on the x axis, its left side on the y axis, and its upper right-hand vertex on the curve $y=4 / x^{2}$. (See Figure (b).) What is the smallest perimeter the rectangle can have, and what are its dimensions?

Figure (a)

Figure (b)
[75]

