The University of Calgary Department of Mathematics and Statistics MATH 249 Worksheet #2

1. For
$$f(x) = \frac{1}{1-x} \left(1 - \frac{4}{x+3} \right)$$
 find $\lim f(x)$

(a) as
$$x \to 1$$
 and

(b) as
$$x \to -3^+$$

(c) as
$$x \to +\infty$$
.

Solution.

For 1a)

the type is " $\frac{0}{0}$ " so we have to simplify

$$f(x) = \frac{1}{1-x} \cdot \frac{x+3-4}{x+3} = \frac{-(1-x)}{(1-x)(x+3)} = \frac{-1}{x+3}$$
 for any $x \neq 1, -3$.

As $x \to 1$ the limit is $\frac{-1}{4}$.

For1b)

We can use the simplification from above and the type of the limit is " $\frac{-1}{0+}$ " so the limit is $-\infty$.

OR

from the original formula the limit is $L = \frac{1}{4} \cdot \left(1 - \frac{4}{0}\right) = -\infty$

For 1c)

From the simplified formula the type is " $\frac{-1}{\infty}$ " so the limit is 0.

OR

from the original the type is " $\frac{1}{-\infty}$ " · $\left(1 - \frac{4}{\infty}\right) = 0 \cdot (1 - 0) = 0$.

2. For $f(x) = \sqrt{9-x^2}$ and $g(x) = \frac{3}{x-1}$ find the compositions $g \circ g$ and $f \circ g$ and their domains.

Solution.

For 2)

First the domains of the given functions for D_f solve $9 - x^2 \ge 0$, $(3 - x)(3 + x) \ge 0$ split points are $x = \pm 3$, testing $- {}^{neg} - {}^{-3} - {}^{-pos} - {}^{-3} - {}^{-neg} - {}^{-}$

so
$$D_f = [-3, 3]$$
 $D_g = \{x \neq 1\}$ since $x - 1 \neq 0$.

$$g \circ g(x) = g(g(x)) = \frac{3}{(\dots) - 1} = \frac{3}{\frac{3}{x - 1} - 1} = \frac{3}{\frac{3 - (x - 1)}{x - 1}} = \frac{3(x - 1)}{4 - x}$$

we must start in D_g i.e. $x \neq 1$ and we have to guarantee that

$$4-x \neq 0$$
 so $x \neq 4$ $D_{g \circ g} = \{x \neq 1 \land x \neq 4\}$

$$f \circ g(x) = \sqrt{9 - (..)^2} = \sqrt{9 - \frac{9}{(x-1)^2}} = \sqrt{9 \cdot \left(1 - \frac{1}{(x-1)^2}\right)} = 3 \cdot \sqrt{\frac{x^2 - 2x + 1 - 1}{(x-1)^2}} = 3\sqrt{\frac{x(x-2)}{(x-1)^2}}$$

we must start in D_g , $x \neq 1$ and quarantee that $\frac{x(x-2)}{(x-1)^2} \geq 0$, split points are x = 0, 2, 1

testing
$$-p^{os} - 0 - neg - 1 - neg - 2 - pos - - so$$
 $D_{f \circ g} = (-\infty, 0] \cup [2, \infty)$.

3. For $g(x) = \frac{4}{2x-8}$ and $f(x) = \sqrt{x^2-9}$ find $g \circ g$ and $g \circ f$ and their domains

Solution

For 3)

 $D_g = \{x \neq 4\}, D_f = (-\infty, -3] \cup [3, +\infty)$ since we have to solve: $x^2 - 9 \geq 0, x^2 \geq 9, \sqrt{x^2} = |x| \geq 3$

Now,
$$g \circ g(x) = \frac{4}{2()-8} = \frac{2 \cdot 2}{2\left[\left(\frac{4}{2x-8}\right)-4\right]} = \frac{2}{\frac{4-8x+32}{2x-8}} = 2 \cdot \frac{2x-8}{36-8x} = \frac{4(x-4)}{4(9-2x)} = \frac{x-4}{9-2x}$$

for $x \neq 4$ and $x \neq \frac{9}{2}$, so $D_{g \circ g} = (-\infty, 4) \cup (4, 4.5) \cup (4.5, +\infty)$.

For
$$g \circ f(x) = \frac{4}{2() - 8} = \frac{4}{2\sqrt{x^2 - 9} - 8} = \frac{2}{\sqrt{x^2 - 9} - 4} \cdot \frac{\sqrt{x^2 - 9} + 4}{\sqrt{x^2 - 9} + 4} = \frac{2(\sqrt{x^2 - 9} + 4)}{x^2 - 9 - 4^2} = \frac{2(\sqrt{x^2 - 9} + 4)}{x^2 - 25}$$

we know that $x \in D_f$ and that new denominator must be non-zero

$$\sqrt{x^2-9}-4\neq 0, \sqrt{x^2-9}\neq 4$$
, so $x^2-9\neq 4^2, x^2\neq 25$

OR after simplification $x^2 - 25 \neq 0$ i.e. $x \neq \pm 5$,together

$$D_{g \circ f} = (-\infty, -5) \cup (-5, -3] \cup [3, 5) \cup (5, +\infty)$$

4. Find:
$$\lim \frac{1-4x^2}{6x^2-5x+1}$$

(a) as
$$x \to -\infty$$
 (b) as $x \to \frac{1}{2}$ (c) as $x \to \frac{1}{3}^-$.

For 4a)

divide top and bottom by x^2 : $\lim_{x\to-\infty} \frac{\frac{1}{x^2}-4}{6-\frac{5}{x}+\frac{1}{x^2}} = \frac{0-4}{6-0+0} = -\frac{4}{6} = -\frac{2}{3}$ (since "\frac{1}{\pm\infty}" = 0)

For 4b)

the type is " $\frac{0}{0}$ " and we have polynomials

$$\lim_{x \to \frac{1}{2}} \frac{(1-2x)(1+2x)}{(2x-1)(3x-1)} = \lim_{x \to \frac{1}{2}} \frac{-(1+2x)}{3x-1} = \frac{-2}{\frac{1}{2}} = -4.$$

For 4c)

we can use the simplification from above but the type is " $\frac{neg\#}{0^-}$ " since $x < \frac{1}{3}$ so 3x-1 < 0

$$\lim_{x \to \frac{1}{3}^{-}} \frac{-(1+2x)}{3x-1} = \frac{-\frac{5}{3}}{0} = \frac{1}{0} = +\infty$$

5. Find :
$$\lim \frac{\sqrt{3x} - 3}{\sqrt{2x^2 - 6x}}$$

(a) as
$$x \to 3^+$$
, (b) as $x \to +\infty$, (c) as $x \to 0$

For 5a)

$$\lim_{x \to 3^{+}} \frac{\sqrt{3x} - 3}{\sqrt{2x^{2} - 6x}} = 0 = \lim_{x \to 3^{+}} \frac{\sqrt{3x} - 3}{\sqrt{2x^{2} - 6x}} \cdot \frac{\sqrt{3x} + 3}{\sqrt{3x} + 3} = \lim_{x \to 3^{+}} \frac{3x - 3^{2}}{\sqrt{2x^{2} - 6x}} \cdot \frac{1}{\sqrt{3x} + 3} = \lim_{x \to 3^{+}} \frac{3(x - 3)}{\sqrt{2x}(x - 3)} \cdot \frac{1}{\sqrt{3x} + 3} = \lim_{x \to 3^{+}} \frac{3}{\sqrt{2x}} \cdot \frac{x - 3}{\sqrt{x - 3}} \cdot \frac{1}{\sqrt{3x} + 3} = \lim_{x \to 3^{+}} \frac{3}{\sqrt{2x}} \cdot \sqrt{x - 3} \cdot \frac{1}{\sqrt{3x} + 3} = \lim_{x \to 3^{+}} \frac{3}{\sqrt{2x}} \cdot \sqrt{x - 3} \cdot \frac{1}{\sqrt{3x} + 3} = \frac{3}{\sqrt{6}} \cdot 0 \cdot \frac{1}{6} = 0.$$

For 5b)

the type is " $\frac{\infty}{\infty}$ " so we have to divide by the highest power in the denominator in the original from by $x = \sqrt{x^2} \ (x > 0)$:

$$\lim_{x \to +\infty} \frac{\sqrt{3x} - 3}{\sqrt{2x^2 - 6x}} \cdot \frac{\frac{1}{\sqrt{x^2}}}{\frac{1}{\sqrt{x^2}}} = \lim_{x \to +\infty} \frac{\sqrt{\frac{3}{x}} - \frac{3}{x}}{\sqrt{2 - \frac{6}{x}}} = \frac{0 - 0}{\sqrt{2}} = 0$$

OR

we can used the simplified expresion from b)

$$\lim_{x \to +\infty} \frac{3}{\sqrt{2x}} \cdot \sqrt{x - 3} \cdot \frac{1}{\sqrt{3x + 3}} = \lim_{x \to +\infty} 3\sqrt{\frac{x - 3}{2x}} \cdot \frac{1}{\sqrt{3x + 3}} = \lim_{x \to +\infty} 3\sqrt{\frac{1}{2} - \frac{3}{2x}} \cdot \lim_{x \to +\infty} \frac{1}{\sqrt{3x + 3}} = \frac{3}{\sqrt{2}} \cdot 0 = 0 \text{ since "} \frac{1}{\infty} = 0.$$

For 5c)

the limit DNE (does not exist neither as a number nor as $\pm \infty$) since the function is not defined for small negative $x(\sqrt{neg})$

6. For
$$f(x) = \frac{\sqrt{3-x}}{x^2 - 4x + 3}$$
 find $\lim_{x \to a} f(x)$

- (a) as $x \to 3^-$ and
- (b) as $x \to 1^+$
- (c) as $x \to +\infty$.

For 6 a)

the type is " $\frac{0}{0}$ " and the function is defined for x < 3 and $x \neq 1$ we can simplify

$$f(x) = \frac{\sqrt{3-x}}{x^2 - 4x + 3} = \frac{\sqrt{3-x}}{(x-3)(x-1)} = \frac{\sqrt{3-x}}{-(3-x)(x-1)} = \frac{\sqrt{3-x}}{-\sqrt{3-x}\sqrt{3-x}(x-1)} = \frac{\sqrt{3-x}}{-\sqrt{3-x}\sqrt{3-x}(x-1)} = \frac{\sqrt{3-x}}{\sqrt{3-x}(x-1)} = \frac{\sqrt{3-x}}{\sqrt{3-x}} = \frac{\sqrt{3-x}}{\sqrt{3-x}(x-1)} = \frac{\sqrt{3-x}}{\sqrt{3-x}} = \frac{\sqrt$$

Now the type is " $\frac{-1}{0+\cdot(2)}$ " = " $\frac{1}{0-}$ " and the limit is $-\infty$.

For 6b)

We can use the simplification from above or at least identify the type " $\frac{\sqrt{2}}{0}$ " so we have to investigate the sign of the bottom

Since x > 1 and $f(x) = \frac{\sqrt{3-x}}{(x-3)(x-1)}$ we can see that the type is $\frac{\sqrt{2}}{(-2)\cdot 0^+}$ = $\frac{1}{0^-}$ and the limit is $-\infty$.

For 6c)

the limit DNE (does not exists) since the function is not defined for big positive x.

7. For $g(x) = \sqrt{3+x}$ and $f(x) = \sqrt{x-5}$ find the compositions $g \circ g$ and $f \circ g$ and their domains.

For 7)

First the domains of the given functions $D_g = [-3, +\infty)$ since $3 + x \ge 0$;

$$D_f = [5, +\infty) \text{ since } x - 5 \ge 0.$$

$$f \circ g(x) = f(g(x)) = \sqrt{(..) - 5} = \sqrt{\sqrt{3 + x} - 5}$$

we must start in D_g i.e. $x \in [-3, +\infty)$ and we have to guarantee that

$$\sqrt{3+x} - 5 \ge 0$$
, so $\sqrt{3+x} \ge 5$

both sides are positive so we can square $(3+x) \ge 25$, and $x \ge 22$, together

4

$$D_{f \circ g} = [22, +\infty[$$

$$g \circ g(x) = \sqrt{3 + (..)} = \sqrt{3 + \sqrt{3 + x}}$$

we must start in $D_g = [-3, +\infty)$ and quarantee that $3 + \sqrt{3+x} \ge 0$

but it is always true for any $x \in [-3, +\infty)$ so $D_{g \circ g} = [-3, +\infty)$.

8. For
$$f(x) = \frac{|x-3| - |x+3|}{x}$$
 find $\lim_{x \to a} f(x)$

- (a) as $x \to 0$ and
- (b) as $x \to -\infty$
- (c) as $x \to +\infty$.

For 8a)

the type is " $\frac{0}{0}$ " and if x is a small #, neg. or pos,x-3 is close to -3 so negative and |x-3|=-(x-3)=3-x, x+3 is close to 3 so x+3 is positive and |x+3|=x+3 therefore

$$f(x) = \frac{|x-3| - |x+3|}{x} = \frac{3 - x - (x+3)}{x} = \frac{-2x}{x} = -2 \text{ for } x \neq 0$$

so the limit is -2.

ALSO

$$f(x) = \frac{|x-3| - |x+3|}{x} \cdot \frac{|x-3| + |x+3|}{|x-3| + |x+3|} = \frac{|x-3|^2 - |x+3|^2}{x \cdot (|x-3| + |x+3|)} = \frac{(x-3)^2 - (x+3)^2}{x \cdot (|x-3| + |x+3|)} = \frac{x^2 - 6x + 3^2 - (x^2 + 6x + 3^2)}{x \cdot (|x-3| + |x+3|)} = \frac{-12x}{x \cdot (|x-3| + |x+3|)} = \frac{-12}{(|x-3| + |x+3|)}$$
for any $x \neq 0$

Now the limit is

$$L = \frac{-12}{3+3} = -2.$$

For8b)

For x big negative number x-3 is negative and |x-3|=-(x-3)=3-x, also x+3 is negative and

$$|x+3| = -(x+3) = -3 - x,$$

$$f(x) = \frac{|x-3|-|x+3|}{x} = \frac{3-x+x+3}{x} = \frac{6}{x}$$
 so the type of the limit is " $\frac{1}{\infty}$ " and $L=0$.

ALSO for both b) and c)

using the siplification from above $f(x) = \frac{-12}{(|x-3|+|x+3|)}$ so the type is " $\frac{-12}{\infty}$ " and the limit is 0.

For 8 c)

For x big positive both expressions x-3 and x+3 are positive so we can ignore absolute values and

$$f(x) = \frac{x-3-(x+3)}{x} = \frac{-6}{x}$$
 and the type of the limit is " $\frac{-6}{\infty}$ " and the limit is 0.

9. For $g(x) = \sqrt{3-x}$ and $f(x) = \frac{6}{3x-1}$ find the compositions $g \circ f$ and $f \circ f$ and their domains

For 9)

First the domains of the given functions $D_f = \left\{x \neq \frac{1}{3}\right\}$ since $3x - 1 \neq 0$; $D_g = (-\infty, 3]$ since $3 - x \geq 0$.

$$f \circ f(x) = f(f(x)) = \frac{6}{3(\dots) - 1} = \frac{6}{3 \cdot \frac{6}{3x - 1} - 1} = \frac{6}{\frac{18 - (3x - 1)}{3x - 1}} = \frac{6(3x - 1)}{19 - 3x}$$

we must start in D_f i.e. $x \neq \frac{1}{3}$ and we have to guarantee that $19 - 3x \neq 0$ so $x \neq \frac{19}{3}$ and $D_{f \circ f} = \left\{ x \neq \frac{1}{3} \land x \neq \frac{19}{3} \right\}$ $g \circ f(x) = \sqrt{3 - (..)} = \sqrt{3 - \frac{6}{3x - 1}} = \sqrt{\frac{3(3x - 1) - 6}{3x - 1}} = \sqrt{\frac{9x - 9}{3x - 1}} = 3\sqrt{\frac{x - 1}{3x - 1}}$ we must start in $D_f, x \neq \frac{1}{3}$ and quarantee that $\frac{x - 1}{3x - 1} \geq 0$, split points are $x = 1, \frac{1}{3}$ testing $-p^{os} - -\frac{1}{3} - p^{os} - \frac{1}{3} - p^{os} - p^{os} - \frac{1}{3} - p^{os} - p^$