University of Calgary Faculty of Science Department of Mathematics and Statistics

Math 249

Worksheet 3 (Answers)

Fall 2005

- 1. Find the domain and range of each of the relations. Say whether or not the relation is a function and give reasons for your answer.
 - a. $f(x) = \sqrt{x^2 4}$ $Dom \ f = (-\infty, -2] \cup [2, \infty)$ $Range \ f = [0, \infty)$ f is a function.
 - b. $f(x) = \sqrt{6x x^2}$ $Dom \ f = [0, 6]$ $Range \ f = [0, 3]$ f is a function.
 - c. $f = \{(x, y) : x^2 y^2 = 16\}$ $Dom \ f = (-\infty, -4] \cup [4, \infty)$ $Range \ f = [0, \infty)$ f is not a function.
 - d. $f(x) = \frac{|2x 3|}{6 4x}$ $Dom \ f = \left(-\infty, \frac{3}{2}\right) \cup \left(\frac{3}{2}, \infty\right)$ $Range \ f = \left\{-\frac{1}{2}, \frac{1}{2}\right\}$ f is a function.
 - e. $f(x) = \frac{1}{x 4}$ $Dom \ f = (-\infty, 4) \cup (4, \infty)$ $Range \ f = (-\infty, 0) \cup (0, \infty)$ f is a function.

University of Calgary Faculty of Science Department of Mathematics and Statistics

Math 249

Fall 2005

Worksheet 3 (Answers)

f.
$$f(x) = \frac{1}{(x-2)^2}$$

$$Dom \ f = (-\infty, \ 2) \ \cup (2, \ \infty)$$

$$Range \ f = (0, \ \infty)$$
f is a function.

g.
$$f(x) = \sqrt{2 - \sqrt{x}}$$

h.
$$f = \{(x, y) : x^2 + y^2 = 4\}$$

This is a circle which has centre at $(0,0)$.
 $Dom \ f = [-2, 2]$
 $Range \ f = [-2, 2]$
f is not a function.

2. Find each of the following limits if they exist. If they do not exist, give reasons for your answers.

a.
$$\lim_{x\to -2} (3x^2 - 2x + 7) = 23$$

b.
$$\lim_{x\to 2} \left(4x^2 - \frac{2}{x}\right) = 15$$

c.
$$\lim_{x\to 2} \left(\frac{x^2 + x - 6}{x^2 + 3x - 10} \right) = \frac{5}{7}$$

d.
$$\lim_{x \to 1} \left(\frac{\sqrt{3x + 4} - \sqrt{5x + 2}}{\sqrt{2x^2 + 7x} - 3} \right) = -\frac{6}{11\sqrt{7}}$$

e.
$$\lim_{x\to 2} \left(\frac{4x - 8}{\sqrt{2x + 5} - \sqrt{x^2 + 5}} \right) = -12$$

3.3

University of Calgary Faculty of Science Department of Mathematics and Statistics

Math 249

Worksheet 3 (Answers)

Fall 2005

- f. $\lim_{x\to 3} \left(\frac{|x-3|}{|x-3|} \right)$ does not exist since the left and write limits are not equal.
- g. $\lim_{x\to 0} \left(\frac{1}{x\sqrt{1+x}} \frac{1}{x} \right) = -\frac{1}{2}$
- h. $\lim_{x\to 0^-} \left(\frac{1}{x} \frac{1}{|x|} \right) = -\infty$
- i. $\lim_{x\to 0^+} \left(\frac{1}{x} \frac{1}{|x|} \right) = 0$
- j. $\lim_{x\to 1} \left(\frac{x^2-1}{|x-1|} \right)$ does not exist since the left and write limits are not equal.
- k. $\lim_{x\to 2} \left(\frac{\sqrt{6-x}-2}{\sqrt{3-x}-1} \right) = \frac{1}{2}$
- 3. Find a so that $\lim_{x \to -2} f(x)$ exists when $f(x) = \frac{3x^2 + ax + a + 3}{x^2 + x 2}$ a = 15. $\lim_{x \to -2} f(x) = -1.$