University of Calgary Faculty of Science Department of Mathematics and Statistics

Math 249-L05

Fall 2005

Worksheet 7 [Derivatives and applications]

- 1. Determine the points on the curve $y = 2x^3 9x^2 24x + 4$ where the tangent line to the curve is parallel to the x-axis.
- 2. Use the definition of the derivative as a limit to determine f'(x) given that

a.
$$f(x) = \sqrt{x^2 + 4}$$

b.
$$f(x) = \frac{1}{x^2 - 4}$$

c.
$$f(x) = \frac{4x + 5}{3 - 5x}$$

d.
$$f(x) = \frac{1}{\sqrt{4 - x^2}}$$

In each case check your answer by using the rules for differentiation.

3. In each case, determine f'(x) given f(x).

i.
$$f(x) = \sin \left(x^4 + x^3\right)$$

ii.
$$f(x) = \tan \left(\sqrt{4 - x^3} \right)$$

iii.
$$f(x) = \sec (x^{2/3} - x)$$

iv.
$$f(x) = csc \left(\sqrt{x^4 + 1} \right)$$

v.
$$f(x) = \cos(\cos(\cos x))$$

vi.
$$f(x) = \cot \left(\sin \left(x^3 + 1\right)\right)$$

vii.
$$f(x) = \sqrt{x^2 + \sqrt{x^2 + \sqrt{x^2 + 1}}}$$

University of Calgary Faculty of Science Department of Mathematics and Statistics

6.2

Math 249-L05

Fall 2005

Worksheet 7 [Derivatives and applications]

4. Determine all points on each graph of the function given where the tangent line is parallel to the x-axis.

a
$$y = x^4 - x^2 + 1$$

$$b y = \sin 2x - 2 \sin x$$

$$c y = \tan x + \cot x$$

5. Determine whether or not the given curve has a tangent line which is parallel to the x-axis:

$$a y = 2x^3 + 3x^2 + 6x + 12$$

$$b y = 2x^3 - x^2 + 2x - 1$$

6. Exercises 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 in the text.