University of Calgary Faculty of Science Department of Mathematics and Statistics

Math 249

Fall 2005

Worksheet 4(Continuity)

1. Determine whether or not the function given in each case is continuous at the given point. Give reasons for your answer.

a.
$$f(x) = \begin{cases} x^3 + x^2 & x \le -2 \\ 2x^2 - 4 & x > -2 \end{cases}$$
 at $x = -2$

a.
$$f(x) = \begin{cases} x^3 + x^2 & x \le -2 \\ 2x^2 - 4 & x > -2 \end{cases}$$
 at $x = -2$.
b.
$$f(x) = \begin{cases} |x^2 - 4| & -2 \le x \le 2 \\ 2x - 4 & x > 2 \\ 3x + 4 & x < -2 \end{cases}$$
 at $x = 2$ and at $x = -2$.

c.
$$f(x) = \begin{cases} \frac{x^3 - 9x}{x^2 + x - 12} & x > 3\\ \frac{10}{7} & x = 3\\ \frac{2x^2}{7} & x < 3 \end{cases}$$
 at $x = 3$.

d.
$$f(x) = \begin{cases} x + \frac{1}{x} & x < 0 \\ -x^3 & x \ge 0 \end{cases}$$
 at $x = 0$.

e.
$$f(x) = \begin{cases} x + \frac{1}{x} & x < 0 \\ -2 & x = 0 \\ -\frac{1}{x^3} & x > 0 \end{cases}$$
 at $x = 0$.

2. In each case determine values of a and b so that the function given is continuous.

4.2

University of Calgary Faculty of Science Department of Mathematics and Statistics

Math 249

Fall 2005

Worksheet 4(Continuity)

a.
$$f(x) = \begin{cases} 3x^3 - 4x^2 + a & x \le -2 \\ 4x^2 - 1 & x > -2 \end{cases}$$

b.
$$f(x) = \begin{cases} \frac{x^3 + x^2 - ax}{x^2 - 1} & x \le -2\\ 2x^2 + 3x - 4 & x > -2 \end{cases}$$