THE UNIVERSITY OF CALGARY

MATHEMATICS 249
FINAL EXAMINATION, FALL 2002
TIME: 2 HOURS

NAME ID

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
Total	
(max. 75$)$	

SHOW ALL WORK. SIMPLIFY ALL ANSWERS AS MUCH AS POSSIBLE. NO CALCULATORS PLEASE.

THE MARKS FOR EACH PROBLEM ARE GIVEN TO THE LEFT OF THE PROBLEM NUMBER. TOTAL MARKS [75]. THIS EXAM HAS 9 PAGES INCLUDING THIS ONE.
[5] 1. Find and simplify $\lim _{x \rightarrow-5}\left(\frac{25-x^{2}}{2 x^{2}+3 x-35}\right)$.
[5] 2. Find and simplify $\frac{d}{d x} \ln \left(x^{3}-\cos x\right)$.
[5] 3. Find and simplify $\frac{d}{d x}\left(x \tan \left(e^{5 x}\right)\right)$.
[5] 4. Find and simplify $\frac{d}{d x}\left(\frac{(1-x)^{1 / 3}}{3-\sqrt{x}}\right)$.
[6] 5. Do ONE of the following two problems.
(a) Use implicit differentiation to find and simplify $\frac{d y}{d x}$ where $\sin (5 x-y)+2 x=y^{2}+7$.
(b) Use logarithmic differentiation to find and simplify $\frac{d}{d x}\left((\sec x)^{4 x}\right)$.
[6] 6. Find and simplify the equation of the tangent line to the curve $y=\frac{8}{(x-1)^{2}}$ at the point where $x=3$.
[6] 7. USE THE DEFINITION OF DERIVATIVE to find $\frac{d}{d x}(\sqrt{4-3 x})$.
[10] 8. You are given the function $f(x)=x-4 \sqrt{x}$, and that

$$
f^{\prime}(x)=1-\frac{2}{\sqrt{x}}, \quad f^{\prime \prime}(x)=\frac{1}{x^{3 / 2}} .
$$

For the function $f(x)$, find: (a) the domain of f; (b) the critical points; (c) the intervals of increase and decrease; (d) the intervals of concave up and concave down; (e) all local maxima and local minima. Also find (f) the absolute maximum and absolute minimum of $f(x)$ on the interval $[0,25]$.
[6] 9. Find constants k and ℓ so that the function

$$
f(x)= \begin{cases}k-2 x & \text { if } x \leq 2, \\ \ell \sqrt{x+7} & \text { if } x>2\end{cases}
$$

is both continuous and differentiable at $x=2$.
[5] 10. Find and simplify $\int \frac{x^{2}}{\left(x^{3}-8\right)^{3}} d x$.
[5] 11. Find and simplify $\int e^{-x} \cos \left(e^{-x}\right) d x$.
[5] 12. Find and simplify $\int_{-2}^{3}(5-4 x) d x$.
[6] 13. A rectangle has its base on the x axis and its upper two vertices on the parabola $y=12-x^{2}$. What is the largest perimeter the rectangle can have, and what are its dimensions?

