MATH 249

Midterm Handout

1. Evaluate
$\lim _{x \rightarrow \infty}\left(x^{2}-x^{2} \cos \frac{1}{x}\right)$
2. Evaluate
(a) $\lim _{x \rightarrow 0} \frac{\sin x}{x-\pi}$
(b) $\lim _{x \rightarrow \pi} \frac{\sin x}{x-\pi}$
(c) $\lim _{x \rightarrow-\infty} \frac{\sin x}{x-\pi}$.
3. For $y=\frac{\cos \pi x}{1-x}$ find an equation of the tangent line at $x=-\frac{1}{2}$.
4. For $y=\left(\sin \frac{1}{\sqrt{x^{4}+1}}\right)^{3}$ find y^{\prime}.
5. Show that the function $f(x)=x-2 \sin (\pi x)$ has at least one positive zero i.e. $f(x)=0$ at least for one $x>0$.
6. Locate all 3 roots of $p(x)=2 x^{3}-6 x^{2}+7$ i.e. find 3 intervals each containing one root. Sketch the graph of $y=p(x)$.
7. Find $\sec \theta \quad$ if $\sin \theta=\frac{1}{5}$ and $\frac{\pi}{2}<\theta<\frac{3}{2} \pi$.
8. If $\cos \theta=\frac{2}{3}$ and $\pi<\theta<2 \pi$ find $\sin \theta$ and then $\sin 2 \theta$.
9. Find the values of a and b so that the function f is continuous everywhere

$$
f(x)=\left\{\begin{array}{ccc}
\left(\frac{2}{2 x+1}-3\right)\left(4 x^{2}-1\right) & \text { for } & x<-\frac{1}{2} \\
a x+b & \text { for } & -\frac{1}{2} \leq x \leq 2 \\
\cos \left(-\frac{\pi}{x}\right) & \text { for } & x>2
\end{array} .\right.
$$

10. Find the values of a and b so that the function f is continuous everywhere

$$
f(x)=\left\{\begin{array}{ccc}
\cos (\pi x)-2 \sin \frac{\pi x}{2} & \text { for } & x>3 \\
a x^{2}+b & \text { for } & 0 \leq x \leq 3 \\
6 \cdot \frac{\sqrt{9-x}-3}{x} & \text { for } & x<0
\end{array}\right.
$$

11. \mathbf{A}

Sketch the graph of ONE function satisfying all the following conditions:
(a) f is defined on $[-2,+\infty)$
(b) f is discontinuous at $x=0,1,2$ where $\lim _{x \rightarrow 1} f(x)=3, \lim _{x \rightarrow 2} f(x)$ DNE(does not exist).otherwise continuous
(c) $x=0$ is a vertical asymptote and $y=-2$ is a horizontal asymptote
(d) f is not differentiable at $x=-1,0,1,2$ (no $\left.f^{\prime}(-1)\right)$ otherwise differentiable and $f^{\prime}(x)=0$ for all $\left.x \in\right] 0,1\left[\right.$, also $f^{\prime}(4)=0$.
(e) the maximum value is 3 .

B

Sketch the graph of ONE function satisfying all the following conditions:
(a) f is defined on $(-\infty, 1]$
(b) f is discontinuous at $x=-3$ and $x=-2$ where $\lim _{x \rightarrow-3^{+}} f(x)=f(-3)=5$ otherwise continuous
(c) $x=-2$ is a vertical asymptote and $\lim _{x \rightarrow-\infty} f(x) D N E$ (does not exists)
(d) f is not differentiable at $x=-1,-2,-3$ (no $f^{\prime}(-1)$) otherwise differentiable and $f^{\prime}(x)=0$ for all $\left.x \in\right]-1,0\left[\right.$,also $f^{\prime}(-4)=0 ;$
(e) the minimum value is -2 .

C
Sketch the graph of ONE function satisfying all the following conditions:
(a) f is defined on $]-\infty, 2[$
(b) f is discontinuous at $x=-3$ and $x=-2$ where $\lim _{x \rightarrow-3} f(x)=2$, and $x=-2$ is a vertical asymptote,otherwise continuous
(c) $y=1$ is a horintal asymptote
(d) f is not differentiable at $x=-1,-2,-3$ (no $f^{\prime}(-1)$) otherwise differentiable and $f^{\prime}(x)=0$ for all $\left.x \in\right] 1,2\left[\right.$, also $f^{\prime}(-4)=0$;
(e) the minimum value is $\frac{1}{2}$.

D
Sketch the graph of ONE function satisfying all the following conditions:
(a) f is defined on $]-1, \infty[$
(b) f is discontinuous at $x=3$ and $x=2$ where $\lim _{x \rightarrow 2^{+}} f(x)=f(2)=3$, $x=3$ is a vertical asymptote ,otherwise continuous
(c) and $\lim _{x \rightarrow+\infty} f(x) D N E$ (does not exists)
(d) f is not differentiable at $x=0,2,3$ (no $\left.f^{\prime}(0)\right)$ otherwise differentiable and $f^{\prime}(x)=0$ for all $\left.x \in\right]-1,0\left[\right.$, also $f^{\prime}(4)=0$.

E
Sketch the graph of ONE function satisfying all the following conditions:
(a) f is defined on $]-\infty,+\infty[$
(b) f is discontinuous at $x=-1$ and $x=2$ where $\lim _{x \rightarrow-1} f(x)$ DNE $x=2$ is a vertical asymptote ,otherwise continuous
(c) and $\lim _{x \rightarrow-\infty} f(x) D N E$ (does not exists), $y=-3$ is a horizontal asymptote;
(d) f is not differentiable at $x=-1,1,2\left(\right.$ no $\left.f^{\prime}(1)\right)$ otherwise differentiable and $f^{\prime}(x)=0$ for all $\left.x \in\right] 2,3\left[\right.$,also $f^{\prime}(4)=0 ;$
(e) the maximum value is 4 .

