THE UNIVERSITY OF CALGARY

MATHEMATICS 249
FINAL EXAMINATION, FALL 2003
TIME: 2 HOURS

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
Total (max. 65$)$	

SHOW ALL WORK. SIMPLIFY ALL ANSWERS AS MUCH AS POSSIBLE. NO CALCULATORS PLEASE.

THE MARKS FOR EACH PROBLEM ARE GIVEN TO THE LEFT OF THE PROBLEM NUMBER. TOTAL MARKS [65]. THIS EXAM HAS 8 PAGES INCLUDING THIS ONE.
[5] 1. Find $\frac{d}{d x}\left(\frac{\cos ^{2} x-e^{3 x}}{\sin x}\right)$.
[5] 2. Find $\frac{d}{d x}\left(x^{1 / 4} \ln (7-6 x)\right)$.
[6] 3. USE THE DEFINITION OF DERIVATIVE to find $\frac{d}{d x}(\sqrt{7 x})$.
[6] 4. Use implicit differentiation to find $d y / d x$ where $y^{2} \tan \left(x+y^{2}\right)=4 x$.
[8] 5. An object moves along the number line so that its position at any time t is given by

$$
p(t)=\frac{3 t-4}{t^{2}+1} .
$$

(a) Show that the velocity of the object at time t is given by $v(t)=-\frac{3 t^{2}-8 t-3}{\left(t^{2}+1\right)^{2}}$.
(b) Find all times t when the velocity is zero.
(c) Find the acceleration of the object at time $t=0$.
[9] 6. For the function $f(x)=x(6-x)^{3}$, (a) show that $f^{\prime}(x)=-2(6-x)^{2}(2 x-3)$.

Then find (b) the critical numbers; (c) the intervals of increase and decrease; (d) all local maxima and local minima.
[5] 7. For the function $f(x)=\frac{x}{e^{2 x}}$, you are given that

$$
f^{\prime}(x)=\frac{1-2 x}{e^{2 x}} \quad \text { and } \quad f^{\prime \prime}(x)=\frac{4 x-4}{e^{2 x}} .
$$

Find the intervals on which $f(x)$ is concave up and where it is concave down. Then find all points of inflection.
[5] 8. Find all constants k so that the function

$$
f(x)= \begin{cases}\cos 3 x & \text { if } x<0 \\ (3 \cos x)+k & \text { if } x \geq 0\end{cases}
$$

is continuous at $x=0$. Also, for each such value of k, determine whether $f(x)$ is differentiable at $x=0$.
[5] 9. Find and simplify $\int \frac{(\ln x)^{5}}{x} d x$.
[5] 10. Find and simplify $\int_{0}^{\pi / 2}(\sin x+249 \cos x) d x$.
[6] 11. Find the point on the curve $y=\frac{4}{\sqrt{x}}$ which is closest to the origin $(0,0)$.

