University of Calgary Faculty of Science Department of Mathematics and Statistics

Math 249 - 02

Worksheet 3 (Limits)

A. Find each of the following limits if they exist. If they do not exist, give reasons for your answers.

1.
$$\lim_{x\to -2} (3x^2 - 2x + 7)$$

$$2. \qquad \lim_{x\to 2}\left(4x^2-\frac{2}{x}\right)$$

3.
$$\lim_{x\to 2} \left(\frac{x^2 + x - 6}{x^2 + 3x - 10} \right)$$

4.
$$\lim_{x \to 3} \left(\frac{4x^2 - 7x - 11}{x^2 - 3x - 18} \right)$$

5.
$$\lim_{x\to 1} \left(\frac{\sqrt{3x+4}-\sqrt{5x+2}}{\sqrt{2x^2+7x}-3} \right)$$

6.
$$\lim_{x\to 3} \left(\frac{2x^2 + x - 15}{x^2 + 3x - 18} \right)$$

7.
$$\lim_{x\to 2}\left(\frac{4x-8}{\sqrt{2x+5}-\sqrt{x^2+5}}\right)$$

8.
$$\lim_{x\to 3} \left(\frac{|x-3|}{x-3} \right)$$

9.
$$\lim_{x\to 3} \left(\frac{2x^2 - 11x + 15}{x^2 + 3x - 18} \right)$$

10.
$$\lim_{x\to 0}\left(\frac{1}{x\sqrt{1+x}}-\frac{1}{x}\right)$$

University of Calgary Faculty of Science Department of Mathematics and Statistics

Math 249

Worksheet 3 (Limits)

11.
$$\lim_{x \to \frac{3}{2}} \left(\frac{2x - 3}{|2x - 3|} \right)$$

12.
$$\lim_{x\to 2}\left(\frac{2}{x-2}\right)$$

13.
$$\lim_{x\to 3} \left(\frac{1}{(x-3)^2} \right)$$

14.
$$\lim_{x\to 0^-} \left(\frac{1}{x} - \frac{1}{|x|} \right)$$

15.
$$\lim_{x\to 0^+} \left(\frac{1}{x} - \frac{1}{|x|}\right)$$

$$16. \qquad \lim_{x\to 1} \left(\frac{x^2-1}{|x-1|} \right)$$

17.
$$\lim_{x \to 4} \left(\frac{\sqrt{2x + 1} - 3}{x^2 - 16} \right)$$

18.
$$\lim_{x\to 2} \left(\frac{\sqrt{6-x}-2}{\sqrt{3-x}-1} \right)$$

19.
$$\lim_{x\to 4} \left(\frac{\sqrt{2x+1}-x+1}{x^2-16} \right)$$

20.
$$\lim_{x\to 2} \left(\frac{2x - \sqrt{5x + 6}}{x^2 - 4x + 4} \right)$$

3.3

University of Calgary Faculty of Science Department of Mathematics and Statistics

Math 249

Worksheet 3 (Limits)

B.

1. Find a so that
$$\lim_{x\to -2} f(x)$$
 exists when $f(x) = \frac{3x^2 + ax + a + 3}{x^2 + x - 2}$

2. Given that f is defined as given below, find value(s) of k and a so that $\lim_{x \to -1} f(x)$ exists.

$$f(x) = \begin{cases} \frac{1}{2} + a & x \le -1 \\ \frac{4kx^2 + (k+4)x + 1}{x^2 - 1} & x > -1 \end{cases}$$