UNIVERSITY OF CALGARY
 DEPARTMENT OF MATHEMATICS AND STATISTICS
 MATHEMATICS 249 - L05\&L07 FALL 2009

MIDTERM PRACTICE PROBLEMS

1. Let $y=x^{2} \sin (3 x)+\tan ^{2}\left(\frac{1}{x}\right)$. Find y^{\prime}.
2. Find the limits

$$
\begin{array}{r}
\lim _{x \rightarrow-\infty} \frac{x+x^{5}+7}{3 x-4 x^{4}-6 x^{5}} \\
\lim _{x \rightarrow 0} \frac{1-\cos 3 x}{x^{2}} \\
\lim _{x \rightarrow \infty}\left[\sqrt{4 x^{2}-3 x+1}-2 x\right] \\
\lim _{y \rightarrow 0} \frac{\tan (x+y)-\tan (x)}{y}
\end{array}
$$

3. Find the equation of the tangent line to the graph of

$$
y \cos (x+y)=x+y-\frac{\pi}{2}
$$

at the point $\left(0, \frac{\pi}{2}\right)$.
4. Find all points on the graph of $y=x^{2}+2 x$ where the tangent line also passes through the point $(3,-1)$.
5. Find the x coordinate of all points on the graph of $y=x^{3}+x$ where the tangent line is parallel to the secant line which cuts the curve at $x=1$ and $x=3$.
6. Solve the inequality

$$
\frac{3 x+12}{x-3} \leq \frac{2 x-20}{x+5}
$$

7. Let $f(x)=x e^{x \tan x}$. Find y^{\prime}.
8. Let

$$
y=\frac{1}{(\ln x)^{2}}
$$

Find y^{\prime}.
9. Functions f, g, and h are defined by

$$
f(x)=1-\frac{1}{x^{2}}, \quad g(x)=\sqrt{1+\frac{1}{x}}, \quad h=f \circ g
$$

Find $h(x)$ and simplify it.
Find the domains of f, g, and h. Express your answers in interval notation.
10. Let $f(x)=\sqrt{3 x+10}$. Use the limit definition of derivative to find $f^{\prime}(2)$.
11. Let $f(x)=x^{2}-x \cos x$
(a) Find the linear approximation to f at the point $x_{0}=\frac{\pi}{2}$.
(b) Suppose the linear approximation to f at $x_{0}=\frac{\pi}{2}$ is used to find approximate values of $f(x)$. What is the error if it is used at $x=\pi$?
12. For $x<1$ the graph of certain function $f(x)$ is the curve $y=6 x^{3 / 2}+x$. For $x \geq 1$ the graph of $f(x)$ is the line joining the points $(1,7)$ and $\left(4, y_{0}\right)$.
(a) Is f continuous at the point $x=1$?
(b) Find $\frac{f(1+h)-f(1)}{h}$ when $h<0$.
(c) Find $\lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h}$.
(d) Find a value of y_{0} such that $f^{\prime}(1)$ exists.

