UNIVERSITY OF CALGARY DEPARTMENT OF MATHEMATICS AND STATISTICS

MATHEMATICS 249 — L05&L07 FALL 2009

MIDTERM PRACTICE PROBLEMS

- 1. Let $y = x^2 \sin(3x) + \tan^2(\frac{1}{x})$. Find y'.
- 2. Find the limits

$$\lim_{x \to -\infty} \frac{x + x^5 + 7}{3x - 4x^4 - 6x^5}$$

$$\lim_{x \to 0} \frac{1 - \cos 3x}{x^2}$$

$$\lim_{x \to \infty} \left[\sqrt{4x^2 - 3x + 1} - 2x \right]$$

$$\lim_{y \to 0} \frac{\tan(x+y) - \tan(x)}{y}$$

3. Find the equation of the tangent line to the graph of

$$y\cos(x+y) = x+y - \frac{\pi}{2}$$

at the point $(0, \frac{\pi}{2})$.

- 4. Find all points on the graph of $y = x^2 + 2x$ where the tangent line also passes through the point (3,-1).
- 5. Find the x coordinate of all points on the graph of $y = x^3 + x$ where the tangent line is parallel to the secant line which cuts the curve at x = 1 and x = 3.
- 6. Solve the inequality

$$\frac{3x+12}{x-3} \le \frac{2x-20}{x+5}$$

- 7. Let $f(x) = xe^{x \tan x}$. Find y'.
- 8. Let

$$y = \frac{1}{\left(\ln x\right)^2}$$

Find y'.

9. Functions f, g, and h are defined by

$$f(x) = 1 - \frac{1}{x^2},$$
 $g(x) = \sqrt{1 + \frac{1}{x}},$ $h = f \circ g.$

Find h(x) and simplify it.

Find the domains of f, g, and h. Express your answers in interval notation.

- 10. Let $f(x) = \sqrt{3x+10}$. Use the limit definition of derivative to find f'(2).
- 11. Let $f(x) = x^2 x \cos x$
 - (a) Find the linear approximation to f at the point $x_0 = \frac{\pi}{2}$.
 - (b) Suppose the linear approximation to f at $x_0 = \frac{\pi}{2}$ is used to find approximate values of f(x). What is the error if it is used at $x = \pi$?
- 12. For x < 1 the graph of certain function f(x) is the curve $y = 6x^{3/2} + x$. For $x \ge 1$ the graph of f(x) is the line joining the points (1,7) and $(4,y_0)$.
 - (a) Is f continuous at the point x = 1?
 - (b) Find $\frac{f(1+h)-f(1)}{h} \text{ when } h < 0.$
 - (c) Find $\lim_{h\to 0^-} \frac{f(1+h) f(1)}{h}$.
 - (d) Find a value of y_0 such that f'(1) exists.