The University of Calgary Department of Mathematics and Statistics MATH 249-01 Quiz # 2R Fall,2010

1. For
$$f(x) = \sqrt{3-x}$$
 and $g(x) = \frac{x}{x-2}$ find $g \circ f$ and $g \circ g$ and their domains. [4]

2. For
$$f(x) = \frac{|x-1| - |x+1|}{x^2 + x}$$
 find $\lim f(x)$ as
(a) $x \to 0$ (b) $x \to -\infty$ (c) $x \to -1^+$ [3]

3. For
$$g(x) = \frac{x^2 - x - 2}{x^2 - 1}$$
 find $\lim g(x)$ as
(a) $x \to -1$ (b) $x \to 1^-$ (c) $x \to +\infty$ [3]

Solution

For 1)

 $g \circ f(x) = \frac{(..)}{(..)-2} = \frac{\sqrt{3-x}}{\sqrt{3-x}-2} \quad \text{for the domain solve } 3-x \ge 0 \text{ and } \sqrt{3-x}-2 \ne 0$ thus $3 \ge x$ and $\sqrt{3-x} \ne 2$ $3-x \ne 4$ $x \ne -1$ together $D_{g \circ f} = (-\infty, -1) \cup (-1,3]$

also
$$g \circ f(x) = \frac{\sqrt{3-x}}{\sqrt{3-x-2}} \cdot \frac{\sqrt{3-x}+2}{\sqrt{3-x}+2} = \frac{\sqrt{3-x}\left(\sqrt{3-x}+2\right)}{(3-x)-2^2} = \frac{\sqrt{3-x}\left(\sqrt{3-x}+2\right)}{-(1+x)}$$

$$g \circ g(x) = \frac{(..)}{(..)-2} = \frac{\frac{x}{x-2}}{\frac{x}{x-2}\cdot-2} = \frac{\frac{x}{x-2}}{\frac{x-2}{x-2}\cdot-2} = \frac{\frac{x}{x-2}}{\frac{x-2}{x-2}\cdot-2} = \frac{\frac{x}{x-2}}{\frac{x}{x-2}\cdot-2} = \frac{x}{\frac{x}{x-2}} + \frac{x}{x-2} + \frac{x}{x-2$$

for $x \neq 2, 4$

$$D_{g \circ g} = \{x \neq 2, 4\} = (-\infty, 2) \cup (2, 4) \cup (4, +\infty)$$

For 2)

for a) if x is close to 0
$$|x-1| = |neg| = -(x-1) = 1 - x$$
 and $|x+1| = |pos| = (x+1)$
so $\lim_{x \to 0} \frac{|x-1| - |x+1|}{x^2 + x} = \lim_{x \to 0} \frac{1 - x - (x+1)}{x^2 + x} = \lim_{x \to 0} \frac{-2x}{x(x+1)} = \lim_{x \to 0} \frac{-2}{(x+1)} = -2$
for b) if x is "big neg." number $|x-1| = |neg| = -(x-1) = 1 - x$ and $|x+1| = |neg| = -(x+1)$
so $\lim_{x \to -\infty} \frac{|x-1| - |x+1|}{x^2 + x} = \lim_{x \to -\infty} \frac{1 - x + (x+1)}{x^2 + x} = \lim_{x \to -\infty} \frac{2}{x(x+1)} = "\frac{2}{\infty}" = 0$
for c) x is close to -1 and $x > -1$ $x+1 > 0$
 $|x-1| = |neg| = -(x-1) = 1 - x$ and $|x+1| = |pos| = (x+1)$ as in a)
 $\lim_{x \to -1^+} \frac{|x-1| - |x+1|}{x^2 + x} = \lim_{x \to -1^+} \frac{1 - x - (x+1)}{x(x+1)} = \lim_{x \to -1^+} \frac{-2}{0^+} = "\frac{-2}{0^+}$
For 3).

simplify first, for $x \neq \pm 1$ $g(x) = \frac{x^2 - x - 2}{x^2 - 1} = \frac{(x + 1)(x - 2)}{(x - 1)(x + 1)} = \frac{x - 2}{x - 1}$ thus **for a)** $\lim_{x \to -1} g(x) = \lim_{x \to -1} \frac{x - 2}{x - 1} = \frac{-3}{-2} = \frac{3}{2}$ **for b)** since x < 1 $\lim_{x \to 1^-} g(x) = \lim_{x \to 1^-} \frac{x - 2}{x - 1} = \frac{-1}{0} = \frac{-1}{0} = +\infty$ **for c)** $\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \frac{x - 2}{x - 1} \cdot \frac{1}{\frac{x}{1}} = \lim_{x \to \infty} \frac{1 - \frac{2}{x}}{1 - \frac{1}{x}} = 1$ since $\frac{1}{\infty} = 0$ also from the original form $\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \frac{x^2 - x - 2}{x^2 - 1} \cdot \frac{1}{\frac{x^2}{1-2}} = \lim_{x \to +\infty} \frac{1 - \frac{1}{x} - \frac{2}{x^2}}{1 - \frac{1}{-2}} = 1$