THE UNIVERSITY OF CALGARY
MATHEMATICS 249 L07/L08
FINAL EXAMINATION, FALL 2007
TIME: 2 HOURS

NAME \qquad ID \qquad Section \qquad

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
Total	
$($ max. 75$)$	

SHOW ALL WORK. SIMPLIFY ALL ANSWERS AS MUCH AS POSSIBLE. NO CALCULATORS PLEASE.

THE MARKS FOR EACH PROBLEM ARE GIVEN TO THE LEFT OF THE PROBLEM NUMBER. TOTAL MARKS [75]. THIS EXAM HAS 8 PAGES INCLUDING THIS ONE.
[5] 1. Find $\lim _{x \rightarrow \infty}\left(\frac{x^{2}}{8-3 x^{2}}\right)$.
[5] 2. Use l'Hôpital's rule to find $\lim _{x \rightarrow 0}\left(\frac{5^{x}-1}{\ln (5 x+1)}\right)$.
[5] 3. Find $\frac{d}{d x}\left(\frac{\sqrt{4-3 x}}{\sin \left(4 e^{x}\right)}\right)$.
[5] 4. Find $\frac{d}{d x}\left(\ln (2 x) \cos \left(x^{2}\right)\right)$.
[6] 5. USE THE DEFINITION OF DERIVATIVE to find $\frac{d}{d x}\left(3 x-x^{2}\right)$.
[6] 6. Use implicit differentiation to find y^{\prime} where $2 \sqrt{x y}=x^{2}+2 y^{2}$.
[15] 7. For the function $f(x)=3 x^{5 / 2}-5 x^{3 / 2},(x \geq 0)$, you are given that

$$
f^{\prime}(x)=\frac{15}{2} x^{1 / 2}(x-1) \quad \text { and } \quad f^{\prime \prime}(x)=\frac{15(3 x-1)}{4 x^{1 / 2}} .
$$

(a) Find the critical points.
(b) Find the intervals of increase and decrease of $f(x)$. Use them to determine whether each critical point in part (a) is a local maximum, local minimum, or neither.
(c) Find the absolute maximum and absolute minimum of $f(x)$ for x in the interval $[0,4]$.
(d) Find the intervals where $f(x)$ is concave up and where it is concave down, and find any inflection points.
(e) Find a number $a>0$ so that the tangent line to the curve at the point ($a, f(a)$) passes through the origin $(0,0)$.
[6] 8. Find constants a and b so that the function $f(x)=\left\{\begin{array}{ll}x+2 & \text { if } x \leq a \\ 2 x+3 & \text { if } a<x<b \\ 3 x+1 & \text { if } x \geq b\end{array}\right.$ is continuous at both $x=a$ and $x=b$.
[6] 9. Prove that $\frac{d}{d x}(\csc x)=-\csc x \cot x$. You may use the formulas for the derivative of $\sin x$ or $\cos x$ (or both).
[5] 10. Find and simplify $\int_{1}^{4}\left(6 \sqrt{x}-\frac{32}{x^{3}}\right) d x$.
[5] 11. Find and simplify $\int e^{2 x} \sec ^{2}\left(e^{2 x}\right) d x$.
[6] 12. Do ONE of the following two problems:
(a) A magic beanstalk starts growing at a spot 10 metres from a 4 metre lamppost. The beanstalk grows at 1 metre per hour. Find the rate at which the length s of the beanstalk's shadow is increasing at the instant when the height h of the beanstalk is 3 metres.
(b) A rectangle has two of its sides on the x and y axes, and its upper right corner on the left half of the parabola $y=(x-6)^{2}$ as shown. Find the maximum possible area of the rectangle.

